ELECTROACTIVE MATERIALS FOR ENERGY HARVESTING

Maurizio Mattarelli
Noise in Physical System Laboratory
Department of physics and geology
University of Perugia

SUMMARY

- > Introduction
 - Materials and devices
- > Piezoelectrics
 - Physical properties/fabrication
 - > ZnO microrods
- **Electrets**
 - Physical properties/fabrication
 - SiO₂ micro particles as electrets

TRANSDUCTION MECHANISMS AND MATERIALS

Mechanical action

Strain (cantilever, etc)

Motion («free» inertial mass,)

Strain conversion

- Piezoelectrics
- Electroactive polymers
- Magnetostrictive mat.
- Magnetoelectrics

Electrostatic

► Electrets

Electromagnetic Induction

Magnets

ELECTRIC BEHAVIOR OF MATERIALS

Perfect Insulator (vacuum?) Perfect Conductor (superconductors?)

Dielectrics Low k high k

Piezoelectrics

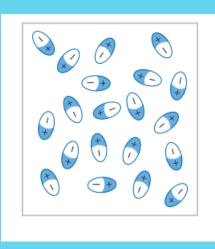
Semiconductors semimetals

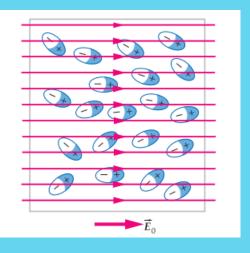
Conductors

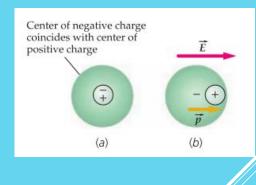
Depending on the external conditions (electric field intensity or frequency, temperature, shape, strain) the behaviour of real materials can move between these extrema

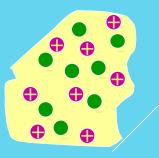
ELECTRIC POLARIZATION

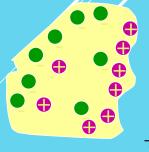
$$P = \frac{\varepsilon - 1}{4\pi} E$$

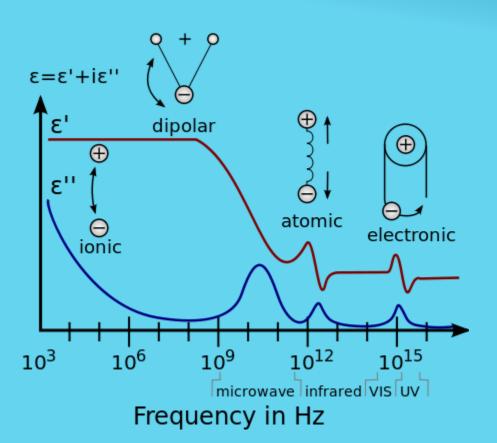

 $P = \frac{\varepsilon - 1}{4\pi}E$ In an external closing dipole moment or POLARIZATION In an external electric field, materials acquire an induced


It can have different origins




Deformation (of electron or ions)


Orientation (of pre-existing dipoles)



FREQUENCY DEPENDENCE

- The response of the electroactive materials is strongly frequency dependent.
- They work best at resonance when the trasferred power is maximum.
- They still react at lower frequency, while at higher frequency they cannot rearrange following the external field

MATERIALS IN MAGNETIC OR ELECTRIC FIELDS

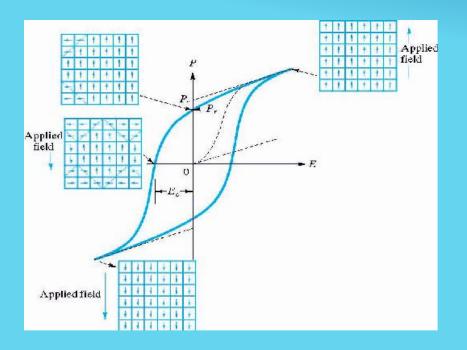
Diamagnetic

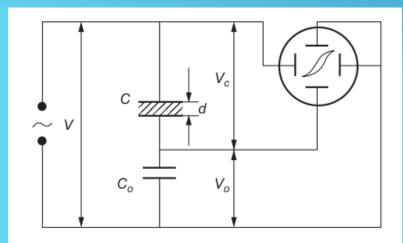
Its atoms have no permanent magnetic moment. The induced moment opposes the external field.

Paramagnetic

Its atoms have permanent magnetic moment, which aligns with the external field

Paraelectric


Also the induced dipole in dieletrics is aligned with the external field


Ferromagnetic

Its atoms have permanent magnetic moment and strong exchange energy connects them into domains

Ferroelectric

HYSTERESIS

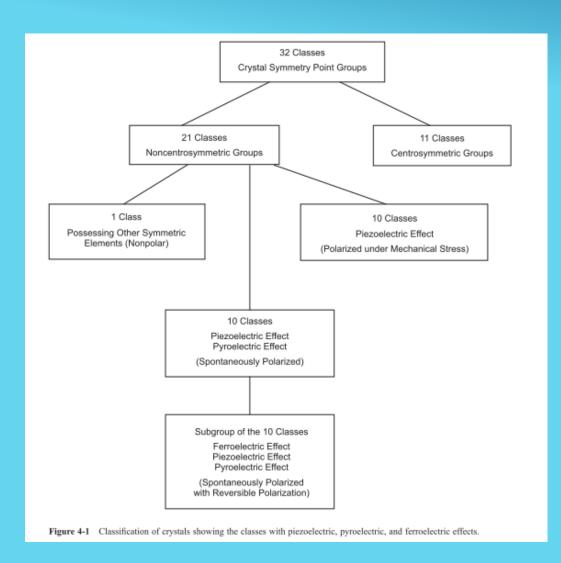
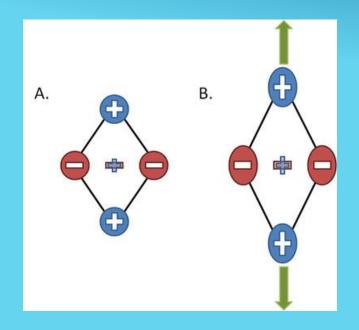


Figure 4-3 The Sawyer–Tower method for the measurement of the polarization-electric field (P–F) characteristics.

In Ferroelectrics (Ferromagnetics) materials, the thermal agitation cannot overcome the alignement of the domains. A coercive field is needed to reverse polarization (magnetization).


THE MICROSCOPIC ORIGIN

Simmetry of the unit cell is a necessary, but not sufficient condition.

Different charge distributions can cancel or strongly decrease the piezoelectric effect

PIEZOELECTRICITY

Centro-symmetric

Non Centro-symmetric

In centrosymmetric crystals the strain does not move the center of charge of the positive or negative charges. On the other hand, in in non centro-symmetric crystals, if the atoms have different charges because of the strain provokes the formation of an electric dipole.

PIEZOELECTRIC COEFFICIENTS

- $P = d \sigma$
- $\varepsilon = d^t E$

Direct Piezoelectric Effect	→	P A	o A
Converse Piezoelectric Effect	-	E ±	E
		Contraction	Evnansion

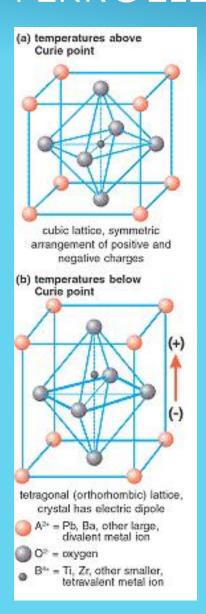
Material	Piezoelectric Constant, d (pm/V)		
Quartz	2.3		
Barium Titanate	100-149		
Lead Niobate	80-85		
Lead zirconate titanate	250-365		

The direct piezoelectric effect is used as the basis for ENERGY HARVESTING (and force, pressure, vibration and acceleration sensors) while converse effect is used as a basis for actuator and displacement devices.

PIEZOELECTRIC COEFFICIENTS

d is third-rank tensor (d_{ijk} 3x3x3) , as it links the effect of strain/stress (second order tensor) to the induced Polarization/Electric field (vector).

However, it is often written in a contract matrix form (3x6), where 4,5,6 index are used to express shear stress/strain

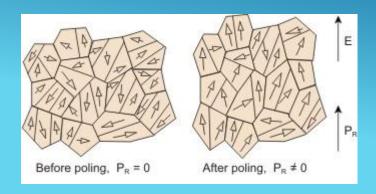

Stress or strain direction normal to the field direction

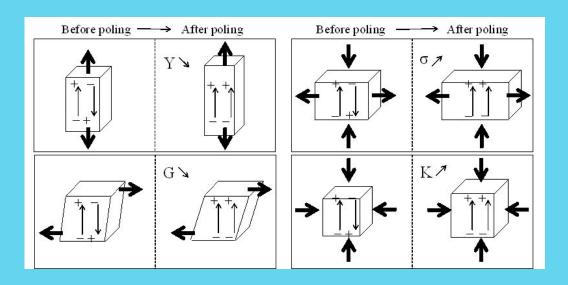
Field (or displacement) direction d_{33} Stress or strain direction parallel to the field direction

Field (or displacement) direction

Axis ((3)) is usually the anomalous axis of uniaxial piezoelectric crystals and the one where the effect is stronger

FERROELECTRICITY

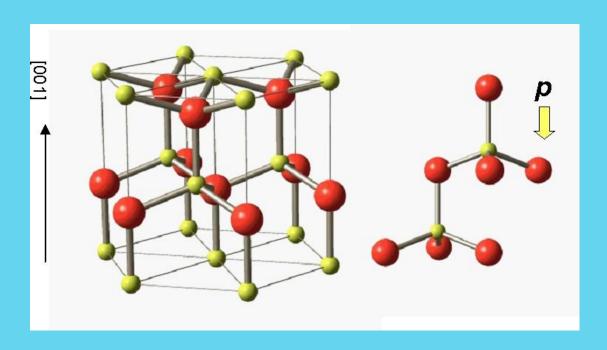

In BaTiO3 at room temperature the stable phase has the Ti4+ ion displaced form the center of the cell. It has two stable positions: above and below the 4 central oxygens.


Depending on its position, the dipole will be reversed.

Name	Chemical Formula	Curie Temperature, T_c (°C)	Spontaneous Polarization $P_s(\mu C m^{-2})$ at $[T (^{\circ}C)]$	Crystal Structure	
(Abbreviation)				Above T_c	Below T _c
Barium Titanate	BaTiO ₃	120	26.0 [23]	Cubic	Tetragonal
Lead Titanate	PbTiO ₃	490	50.0 [23]	Cubic	Tetragonal
Potassium Niobate	KNbO ₃	435	30.0 [250]	Cubic	Tetragonal
Potassium Dihydrogen Phosphate (KDP)	KH_2PO_4	-150	4.8 [-177]	Tetragonal	Orthohombic
Triglycine Sulfate (TGS)	(NH ₂ CH ₂ COOH)₃• H ₂ SO ₄	49	2.8 [20]	Monoclinic (Centrosymm.)	Monoclinic (Noncentrosymm.
Potassium-Sodium Tartrate-Tetrahydrate (Rochelle salt)	KNaC ₄ H ₄ O ₆ •4H ₂ O	24	0.25 [5]	Orthorhombic (Centrosymm.)	Monoclinic (Noncentrosymm.
Antimony Sulfo-iodide	SbSI	22	25.0 [0]	Orthorhombic (Centrosymm.)	Orthorhombic (Noncentrosymm.
Guanidinium Aluminium Sulfate Hexahydrate (GASH)	$C(NH_2)_3Al(SO_4)_2{}^\bullet 6H_2O$	None	0.35 [23]	Trogonal	_

POLING

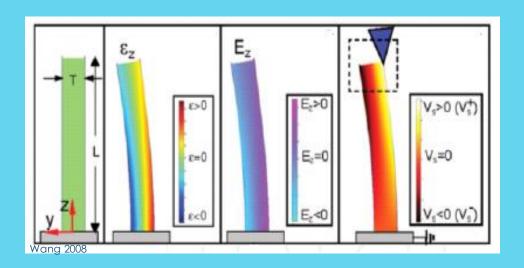
 Under a strong external field it is possible to induce the poling of the ferroelectric material (i.e. polarize)



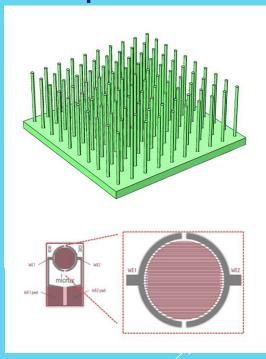
If the material is poled, the stress acting on it can generate an intense change of the electric dipole (usually stronger than in common piezolectric materials)

PYROELECTRICS

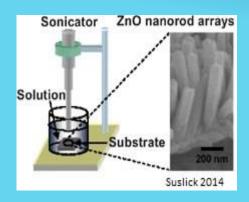
Crystal with a permanent dipole, not reversible.


They have to be grown as single crystals.

Wurtzite structure crystals, such as ZnO, are asymmetric along the [001] axis, ([001] is different from [00-1])


Because of thermal dilatation, the electric dipole increases

ZINC-OXIDE MICRORODS


Objective: exploiting the difference of potential at the base of the pillar induced by the bending

Growth of ZnO pillars on IDE

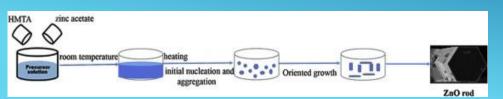
FABRICATION

Sonochemical synthesis

$$(CH_2)_6N_4 + 6H_2O \rightarrow 4NH_3 + 6HCHO$$
 (1)

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
 (2)

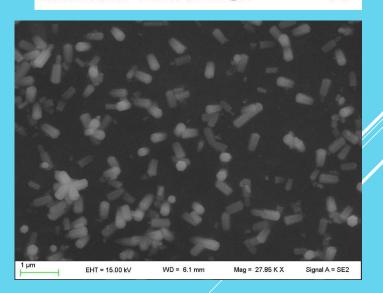
$$Zn^{2+} + 2OH^{-} \xrightarrow{)))} ZnO + H_2O$$
 (3)

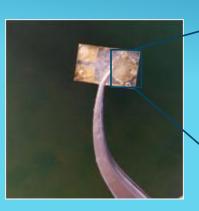

$$Zn^{2+} + 2O_2^- \xrightarrow{)))} ZnO + \frac{3}{2}O_2$$
 (4)

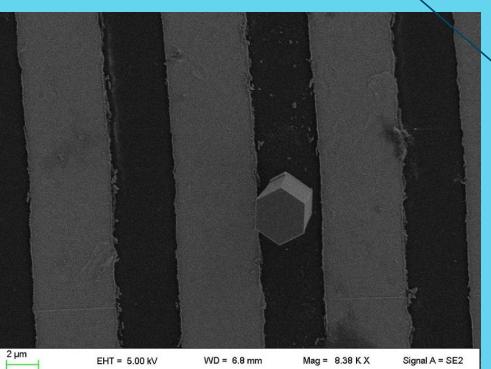
Reagenti:

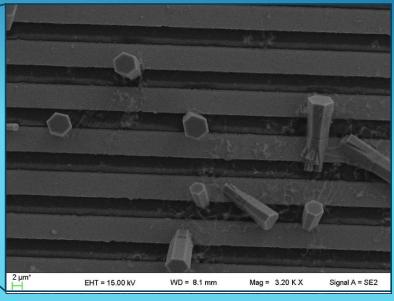
HMTA, $(CH_2)_6N_4$

Acetato di Zinco, $Zn(CH_3COO)_2$

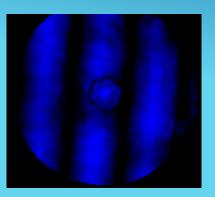

Hydrothermal synthesis


$$C_6H_{12}N_4 + 6H_2O \rightarrow 6CH_2O + 4NH_3$$
 (1)

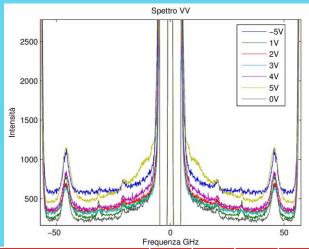

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$
 (2)


$$20H^{-} + Zn^{2+} \leftrightarrow ZnO + H_2O$$
 (3)

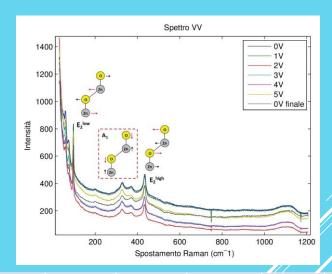
HYDROTHERMAL SYNTHESIS ON IDE



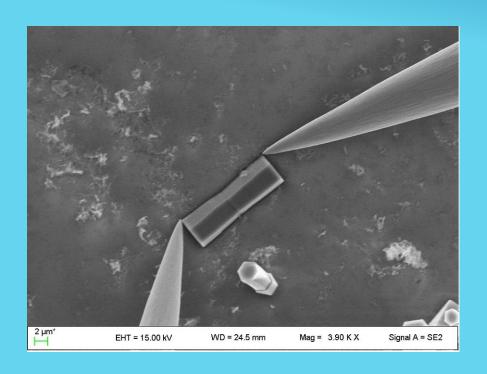
Reagents:

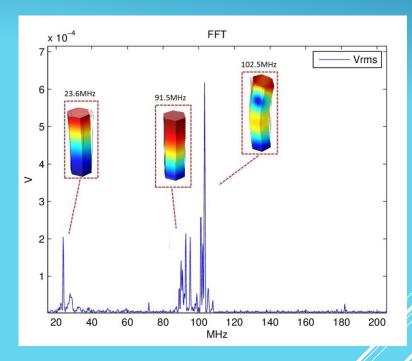

- HMTA e Acetato di Zinco (Rapporto molare 4:1)
- Temperatura 85°C (5h)
- Substrato IDE

SPECTROSCOPIC CHARACTERIZATION



Raman and Brillouin spectroscopy on single crystals




Elementi Matrice C (GPa)	C ₁₁	C ₃₃	C ₄₄	C ₆₆
Ref. Bhat et al.	209	210	42	44
Risultati	209	198	42	43

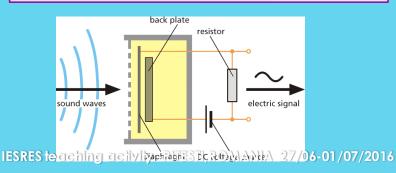
Raman Shift (cm ⁻¹)	E ₂ low	A ₁ (E ₂)	A ₁ (E _{1,} E ₂)	A ₁	E ₂ high
Ref. Damen et al.	101	208	332	380	437
Risultati	101	205	332	379	438

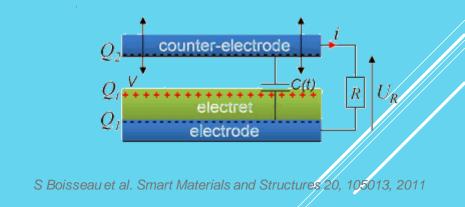
SEM CHARACTERIZATION

Electrical measurements on single crystals in the SEM environment.

It is possible to observe the normal mode of vibrations of the crystal inducing electrical signa at the borders

ELECTRETS

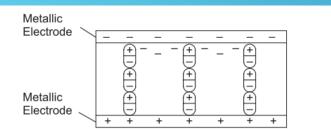

Dielectrics with unbalanced charge (permanent oriented electric dipoles or a net charge.)



Electrical analogue of a magnet: able to generate an electric field

MATERIALS: dielectrics (polymers, oxides) with high dielectric strength and low conducibility

Old applications: microphone

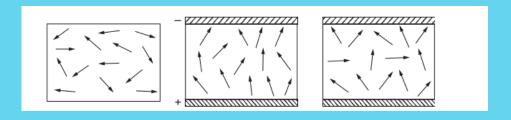


New ones: energy harvesting devices

FORMATION OF ELECTRETS

Two types of electrical charges in an electret:

- monocharges (also called real charges)
- dipolar charges (such as in ferroelectrets)

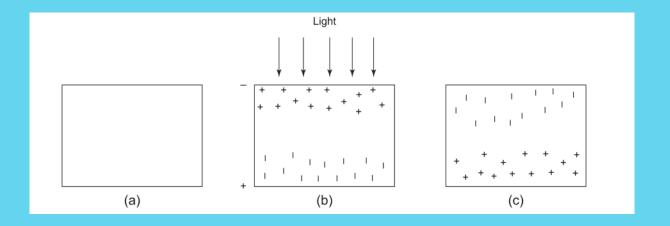


Several fabrication techniques:

- Thermo-Electrical Method (dipolar)
- Electromagnetic Radiation Method (dipolar)
- Liquid-Contact Method (real charges)
- Corona Discharge Method (real charges)
- Electron-Beam Method (real charges)

THERMO-ELECTRICAL METHOD

Dipolar molecules are randomly arranged but they will actively orient under an electric field at a temperature higher than the glass transition temperature, Tg

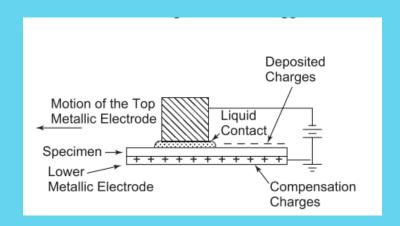

Typycal materials is the Carnauba wax-beeswax (first electret, made by Eguchi in 1919)

Drawback: stability

Ferroelectrets can be considered electrets obtained by thermoelectrical method (the poling) but with, possibly, much higher Tg

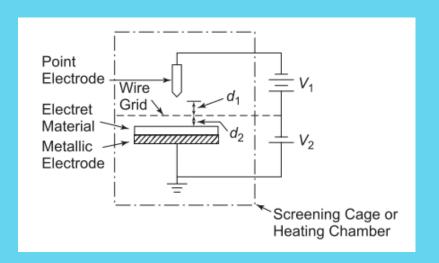
ELECTROMAGNETIC RADIATION METHOD

Displacement of the charge carriers generated by penetrating radiation (x-rays or ultraviolet light), under an externally applied electric field.



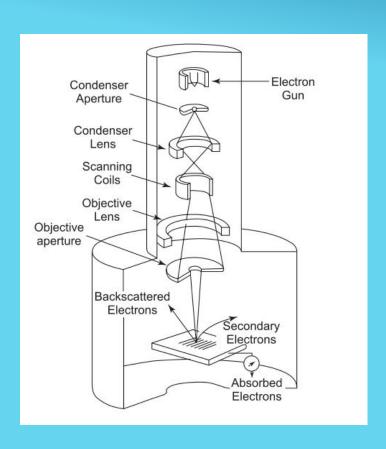
These carriers can be trapped near the electrodes to create a space charge polarization.

The polarization remains after the external field removal


(LIQUID) CONTACT METHOD

Transfer of real charges into the material, by a conductive contact. This can be made at large scale down to the nanoscale (AFM)

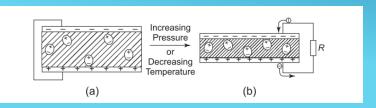
The advantage of the conductive liquid is in the possibility to move the metallic contact all over a large surface


CORONA DISCHARGE

The bottom electrode is a vacuumdeposited metallic film on the material surface, and the top forming metallic electrode is usually made of a metallic wire

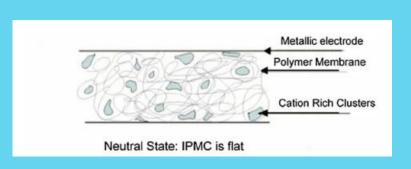
Around the point electrode it is possible to exceed the breakdown strength of the air in a region of a few millimeters. The so formed ions/free electrons can be accelerated toward the grid and so be implanted in the target dielectric material

ELECTRON BEAM METHOD

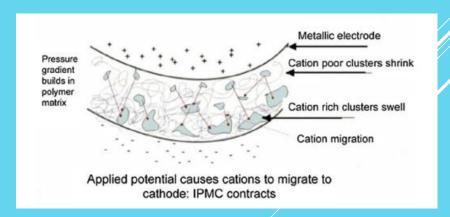

It is possible to inject/extract real charges (electrons) into the electret by SEM

The energy of the electron beam (<50 keV) should be controlled according to the structure and thickness of the material specimens to be used for forming electret

A similar mechanism can be used with ion implantation instrument

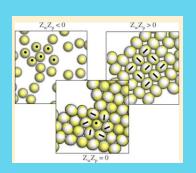

ELECTROACTIVE POLYMERS

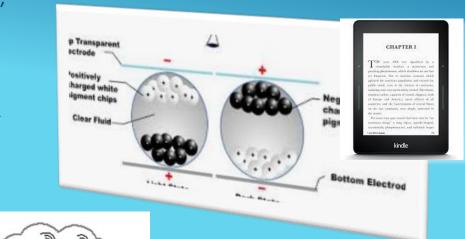
(ARTIFICIAL MUSCLES)



Dipolar (soft) electrets have interesting properties similar to piezolectric materials. They can react to external field changing shape or, viceversa, change their own dipolar field because of a change in shape

More complex structures can be engineered. Polymer are especially intersting.




SIZE REDUCTION OF ELECTRETS

Miniaturization of devices (EH, MP)

The charge provides a further way to functionalize the nano/micro- material

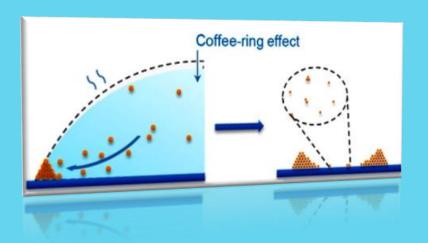
Bianchi et al, Nano Lett. 2014, 14, 3412 – 3418

Proteins

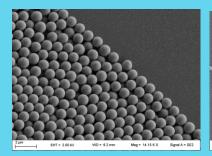
Tofail, Biological Interactions with Surface Charge in Biomaterials (RSC Publ.)

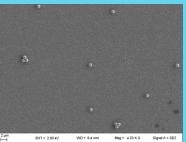
Drawbacks

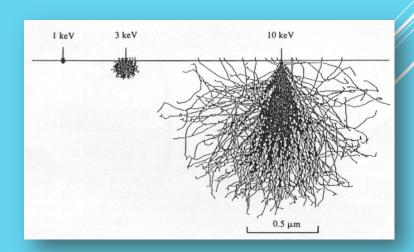
Stability of charging (surface vs space)
Control of charging


But also dynamic applications

Electro-Mechanical resonators

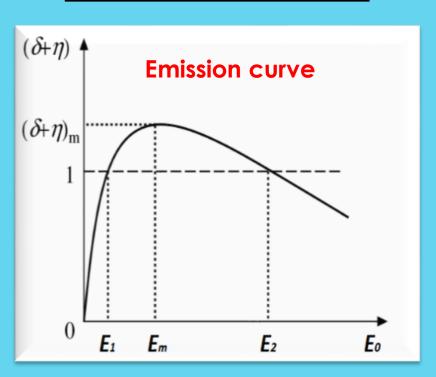

SAMPLES


ightharpoonup SiO₂ particles (0.5 e 1 µm) deposited by drop casting on a polished copper substrate



Fabrication by SEM

- High lateral resolution (5 nm at 20 keV)
- 2) Energy dependent penetration $R = (76/\rho)E_0^{1.67}$



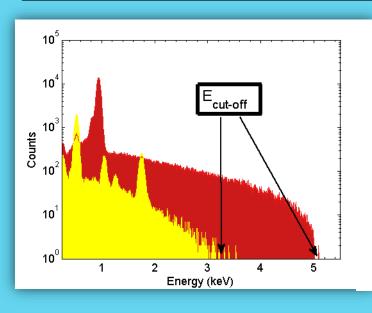
CHARGING MECHANISM

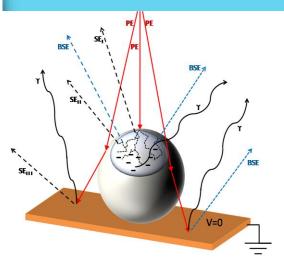
Total Yield Approach

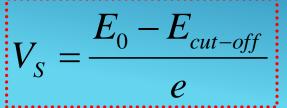
$$\frac{\partial Q}{\partial t} = (1 - \sigma(E_0)) \cdot I_B - I_L$$

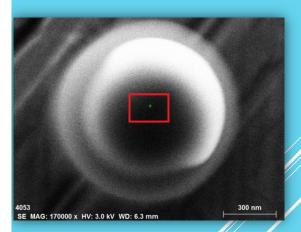
- 1) Crossover energies $(E_1 e E_2)$
- 2) Three chraging region: $(\sigma>1 \in \sigma<1)$

Charge effect: $E_L = E_0 - eV_s$

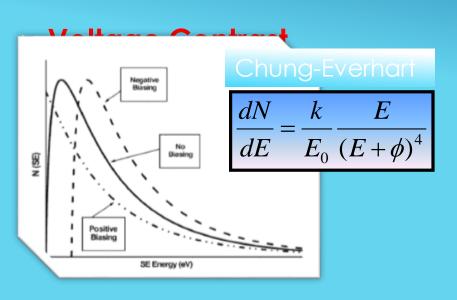

Small size material:

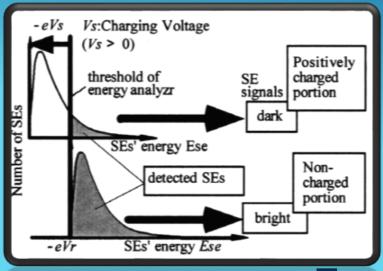

- 1) Leakage current I_L can be significant
- 2) Surface potential V_s up to 200-300 V


DUANE-HUNT LIMIT SHIFT


$$E_L = E_0 - eV_s$$

Bremsstrahlung x-ray spectrum

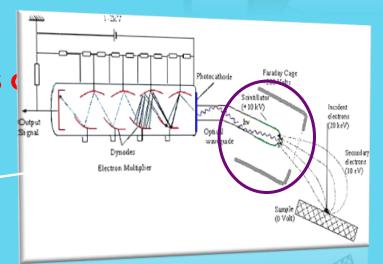


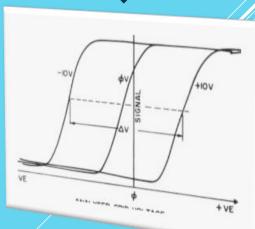


 $\eta(\pi/2) \rightarrow 0$

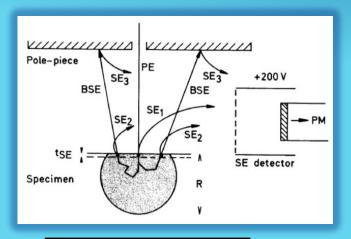
$$V_S < 2R \cdot r.d. \approx 350V \Rightarrow Q \approx 10^5 e^{-1}$$

ELECTRONIC SPECTROSCOPY



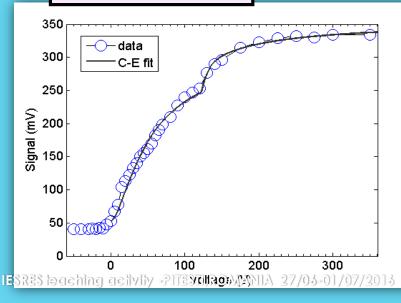


SEs' energy Ese


Output depends potential

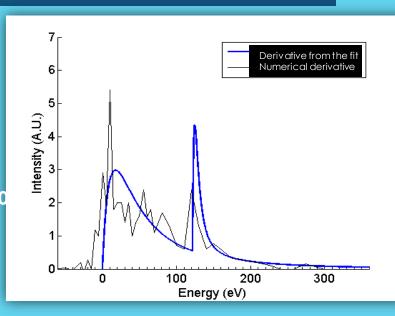
Everhart-Thornley detector (E-T)

ELECTRONIC SPECTROSCOPY

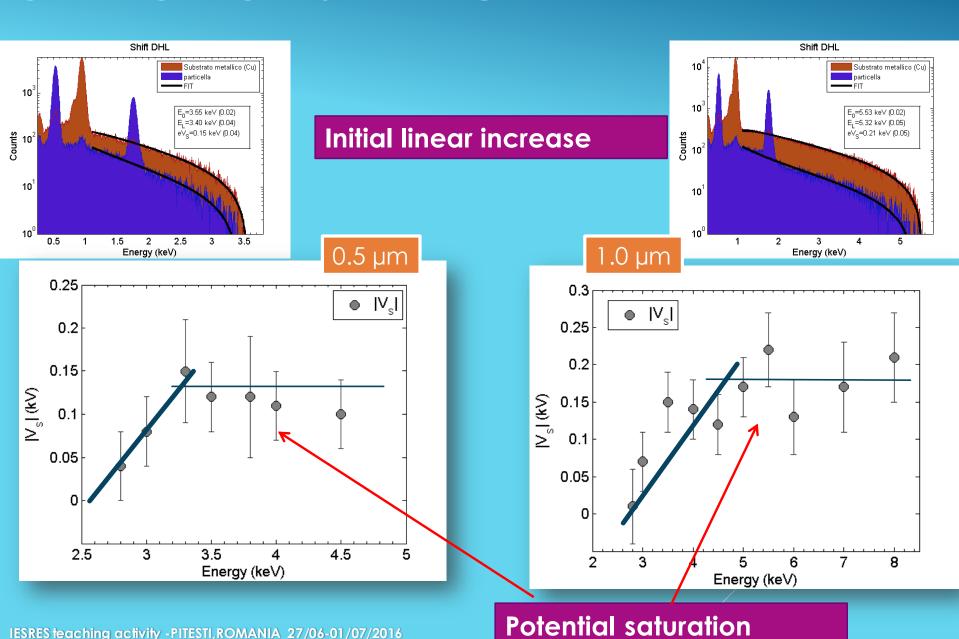

Strong background from the SEM chamber

Increasing Working Distance WD

Increasing (


$$\frac{dN}{dE} = \frac{k}{E_0} \frac{E}{(E + \phi)^4}$$

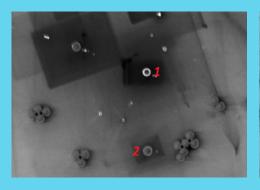
$$S_{SE} = f_1(\delta \sec(\phi) + \delta \eta \beta) + f_2 \delta_{ext} + f_3 (d\eta / d\Omega) \Delta \Omega$$



=1.8 keV 0=6.8mm ag=150KX

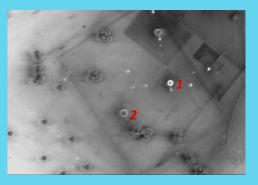
=(121±19)V ^{Prems}=(130 ±50

CHARGING VS ENERGY

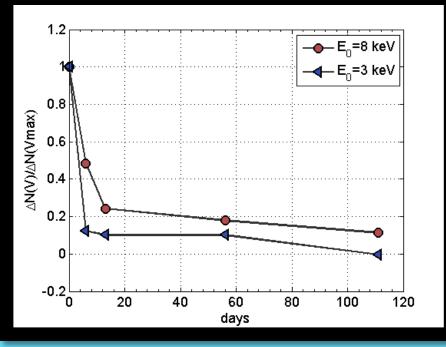

CHARGE TEMPORAL EVOLUTION

Samples in air

Monitoring charge by non penetrating electrons (0.5-1.5 keV) Observation s by In Lens detector


More electrons detected from charged particles

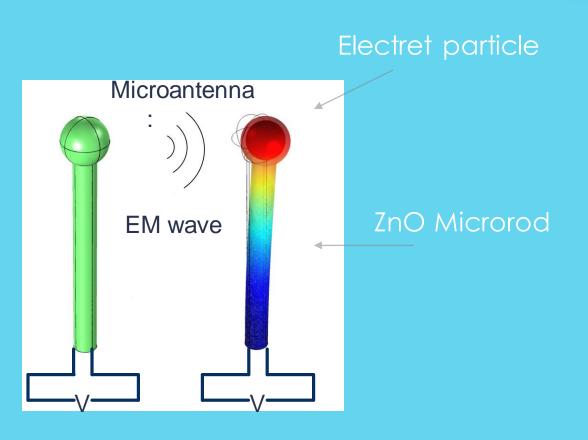
13 days



56 days

Two characteristic lifetimes:

- fast (surface)
- 2) Slow (space)


111 days

IESRES teaching activity -PITESTI, ROMANIA 27/06-01/07/2016

A «MIXED» DEVICE

A useful commistion of the properties of electrets particles and piezoelectric rod

The particle works as a (em)force collector.

The force impulse is transferred into electrical form by means of the piezo transduction

FINAL COMMENTS

- Device and materials are strongly correlated
- Electro active mterials are effective ways to harvest mechanical energy (noise vibration and direct forces)
- Piezoelectric properties depend on the asymmetric structure of the crystal
- Electrets are artificial materials which provide significant external electric field