

Micro scale Energy Harvesting Systems

ERASMUS + IESRES
INNOVATIVE EUROPEAN STUDIES on RENEWABLE ENERGY SYSTEMS

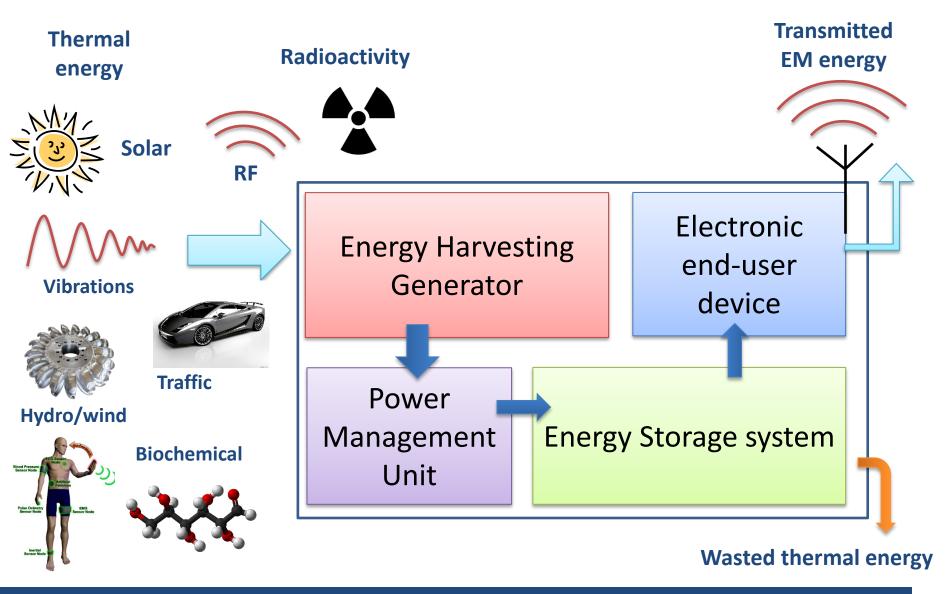
Teaching Activity

8th – 13th May 2017 - Klaipeda, Lithuania

Francesco Cottone
NiPS laboratory, Department of Physics and Geology,
Università di Perugia, Italy

Outline

Energy harvesting fundamentals


Micro- to nano-scale vibrational energy harvesters

Piezoelectric micro-structures for EH

MEMS electrostatic systems for EH

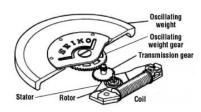
Final considerations

What is an energy harvester?

Historical human-made energy harvesters

Wind mill (Origin: Persia, 3000 years Sailing ship (XVI-XVII century) BC)

Crystal radio - 1906



SELF-powered by Radio Frequencies !!!

First automatic wristwatch, Harwood, c. 1929 (Deutsches Uhrenmuseum, Inv. 47-3543)

First automatic watch. Abraham-Louis Perrelet, Le Locle, 1776

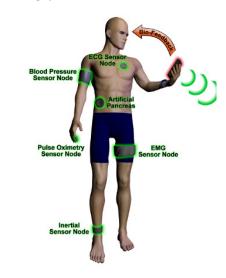
Self-charging Seiko wristwatch

Energy havesting applications

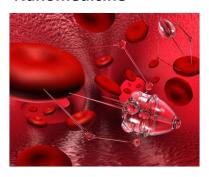
Structural Monitoring

02/07/2014 - Belo Horizonte (Brazil) (birdge collapse at FIAT factory)

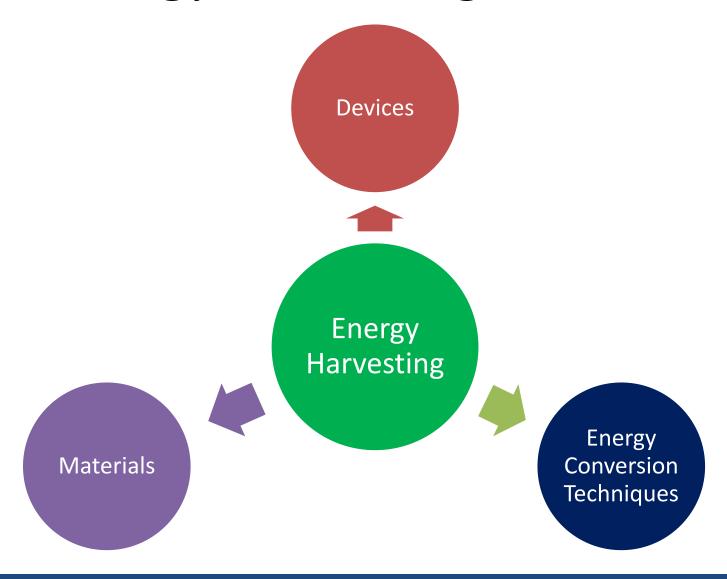
Environmental Monitoring

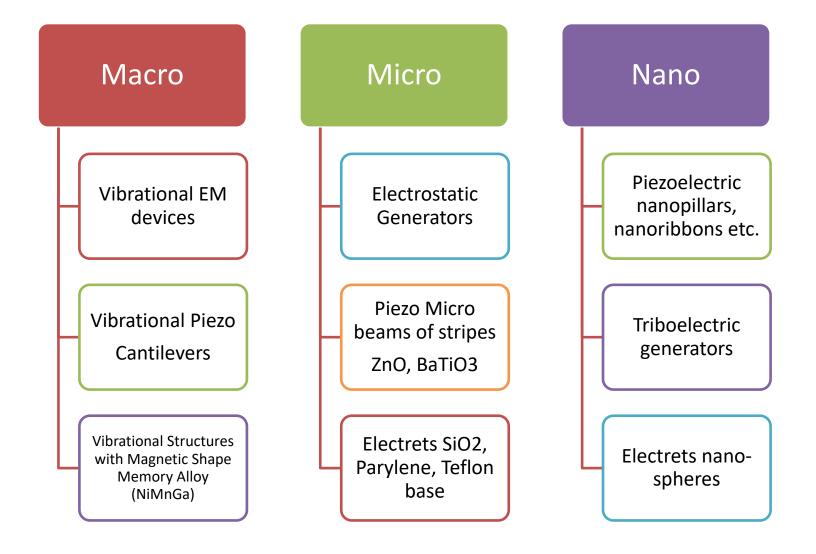


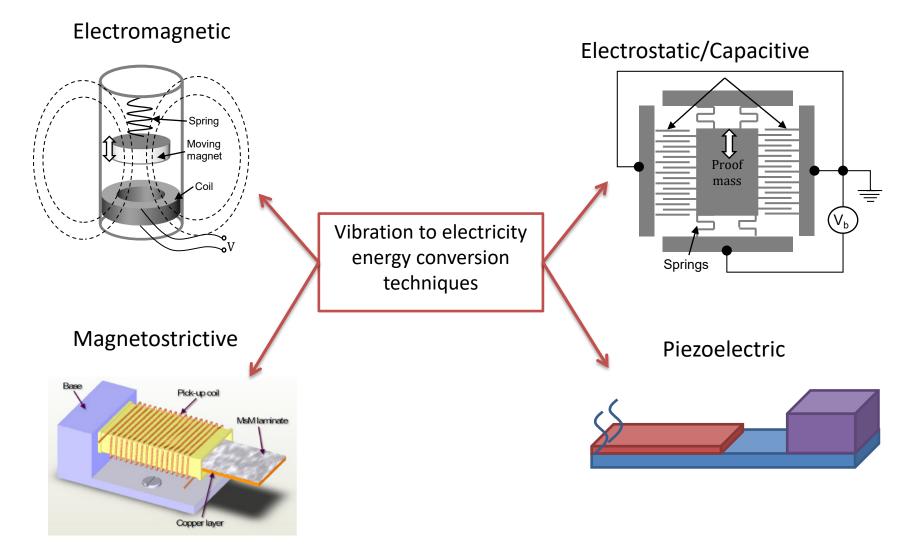
Military applications



Healthcare sensors

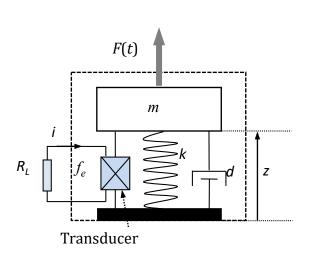

Emergency medical response Monitoring, pacemaker, defibrillators

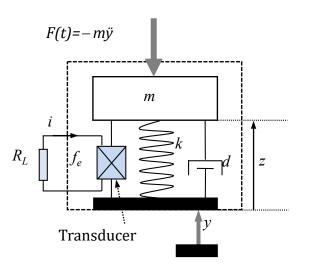

Nanomedicine


Energy Harvesting research

Vibration Energy Harvesting research

Vibration energy harvesting

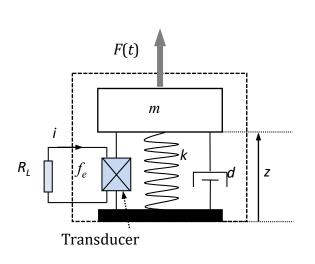


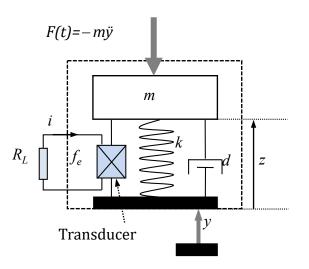

Piezoelectric conversion

Characteristic	PZT-5H	BaTiO3	PVDF	AlN (thin film)
d ₃₃ (10 ⁻¹⁰ C/N)	593	149	-33	5,1
d ₃₁ (10 ⁻¹⁰ C/N)	-274	78	23	-3,41
k ₃₃	0,75	0,48	0,15	0,3
k ₃₁	0,39	0,21	0,12	0,23
ε_r	3400	1700	12	10,5

$$k_{31}^2 = \frac{El.energy}{Mech.energy} = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$$

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a piezoelectric material. IT's defined as the ratio between the mechanical energy converted and the electric energy input or the electric energy converted per mechanical energy input




Inertial generators requires only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

At micro/nano scale direct force generators are much more efficient because not limited by the inertial mass!!!

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = F(t) \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

Inertial generators requires only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

Power fluxes

$$m\ddot{z}\dot{z} + d\dot{z}^{2} + \frac{dU(z)}{dz}\dot{z} + \alpha V_{L}\dot{z} = F(t)\dot{z}$$

$$P_{m}(t) = F(t)\cdot\dot{z}(t)$$

$$P_{m}(t) = -m\ddot{y}\cdot\dot{z} = -\rho l^{3}\cdot z$$

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases} \rightarrow \alpha, \lambda, \omega_c, \omega_i \quad \text{Parameters that depends only on the transduction technique!}$$

For LINEAR mechanical oscillators with elastic potential well

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

Laplace transform

$$\ddot{y} = Y_0 e^{j\omega t} \qquad \Longrightarrow \qquad \begin{pmatrix} ms^2 + ds + k & \alpha \\ -\lambda \omega_c s & s + \omega_c \end{pmatrix} \begin{pmatrix} Z \\ V \end{pmatrix} = \begin{pmatrix} -mY \\ 0 \end{pmatrix}$$

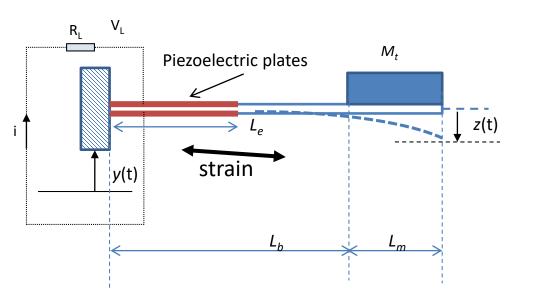
$$Z = \frac{-mY \cdot (s + \omega_c)}{\det A}(s + \omega_c) = \frac{-mY \cdot (s + \omega_c)}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c}$$

$$Z = \frac{-mY}{\det A}(s + \omega_c) = \frac{-mY \cdot (s + \omega_c)}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c},$$

$$V = \frac{-mY}{\det A}\lambda\omega_c s = \frac{-mY \cdot \lambda\omega_c s}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c}.$$

For LINEAR mechanical oscillators

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases}$$


By substituting $s=j\omega$ in , we can calculate the electrical power dissipated across the resistive load

$$P_{e}(\omega) = \frac{|V|^{2}}{R_{L}} = \frac{Y_{0}^{2}}{2R_{L}} \left| \frac{m\lambda\omega_{c}j\omega}{(\omega_{c} + j\omega)(-m\omega^{2} + dj\omega + k) + \alpha\lambda\omega_{c}j\omega} \right|^{2}$$

In approximate version, at resonance $\omega = \omega_n$, (William et al.)

$$P_e = \frac{m\zeta_e \omega_n^3 Y_0^2}{4(\zeta_e + \zeta_m)^2} = \frac{m^2 d_e \omega_n^4 Y^2}{2(d_e + d_m)^2}$$
 Where ω_c , λ and α are included in the electrical damping **factor** d_e

Piezoelectric conversion

Governing equations

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

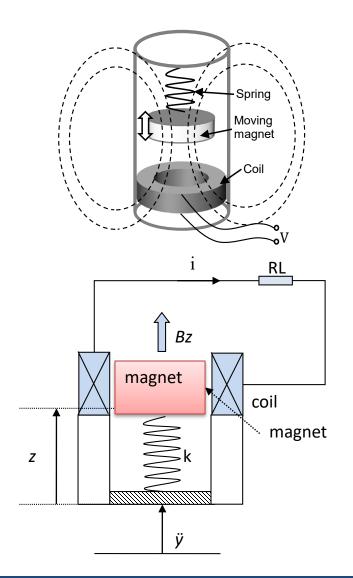
$$\alpha = kd_{31} / h_p k_2, \qquad \lambda = \alpha R_L,$$

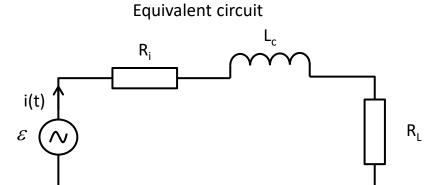
$$\omega_c = 1 / R_L C_p, \qquad \omega_i = 1 / R_i C_p,$$

Piezoelectric layer
$$\longrightarrow$$
 Subtrate layer \longrightarrow \uparrow h_p

Ep and Es are the Young's modulus of piezo layer and steel substrate respectively

$$k = k_1 k_2 E_p,$$

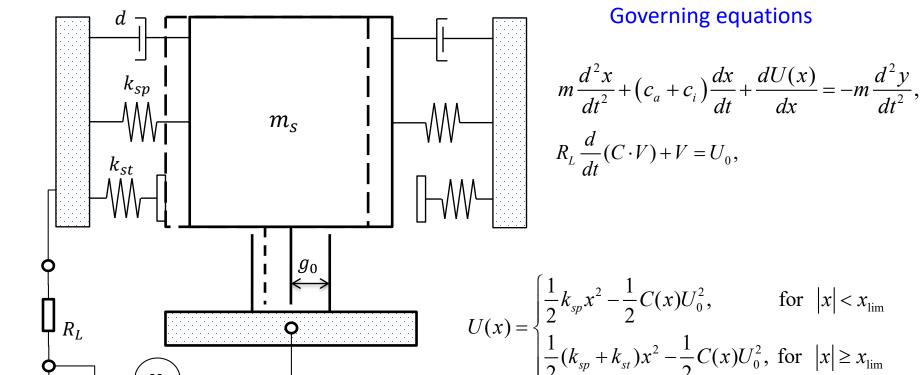

$$k_1 = \frac{2I}{b(2l_b + l_m - l_e)},$$


$$k_2 = \frac{3b(2l_b + l_m - l_e)}{l_b^2 \left(2l_b + \frac{3}{2}l_m\right)},$$

$$b = \frac{h_s + h_p}{2},$$
 $I = 2 \left[\frac{w_b h_p^3}{12} + w_b h_p b^2 \right] + \frac{E_s / E_p w_b h_s^3}{12},$

Inertia area moment of the beam

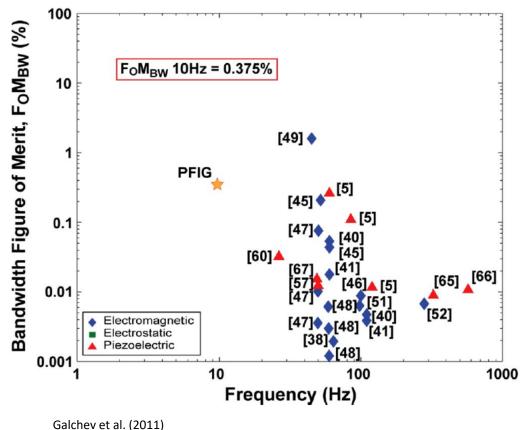
Electromagnetic conversion


Governing equations

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases}$$

$$lpha = Bl / R_L, \qquad \lambda = Bl = \alpha R_L,$$
 $\omega_c = R_L / L_c, \qquad \omega_i = R_i / L_c,$

Electrostatic conversion


Figure of merit

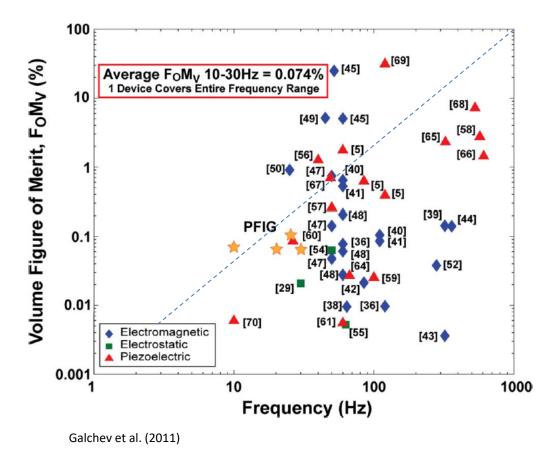
$$FoM_V = \frac{Useful\ Power\ Output}{\frac{1}{16}Y_0\rho_{Au}Vol^{\frac{4}{3}}\omega^3}$$

Bandwidth figure of merit

$$\text{FoM}_{\text{BW}} = \text{FoM}_{\text{V}} imes rac{\delta \omega_{1 \text{ dB}}}{\omega}$$

Frequency range within which the output power is less than 1 dB below its maximum value

Mitcheson, P. D., E. M. Yeatman, et al. (2008).

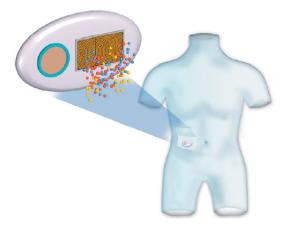

Figure of merit

$$\text{FoM}_{\text{V}} = \frac{\text{Useful Power Output}}{\frac{1}{16} Y_0 \rho_{\text{Au}} \text{Vol}^{\frac{4}{3}} \omega^3}$$

Bandwidth figure of merit

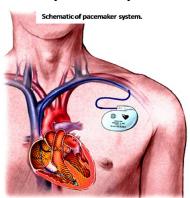
$$\text{FoM}_{\text{BW}} = \text{FoM}_{\text{V}} imes rac{\delta \omega_{1 \text{ dB}}}{\omega}$$

Frequency range within which the output power is less than 1 dB below its maximum value


Mitcheson, P. D., E. M. Yeatman, et al. (2008).

Comparison of conversion techniques

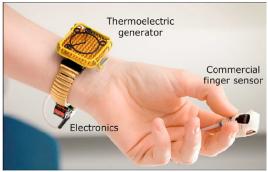
Technique	Advantages 🙂	Drawbacks 😬
Piezoelectric	 high output voltages well adapted for miniaturization high coupling in single crystal no external voltage source needed 	 expensive small coupling for piezoelectric thin films large load optimal impedance required (MΩ) Fatigue effect
Electrostatic	 suited for MEMS integration good output voltage (2-10V) possiblity of tuning electromechanical coupling Long-lasting 	 need of external bias voltage relatively low power density at small scale
Electromagnetic	 good for low frequencies (5-100Hz) no external voltage source needed suitable to drive low impedances 	 inefficient at MEMS scales: low magnetic field, micro- magnets manufacturing issues large mass displacement required.


Microscale energy harvesters

MEMS-based drug delivery systems

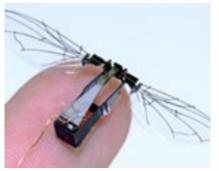
Bohm S. et al. 2000

Heart powered pacemaker



D. Tran, Stanford Univ. 2007

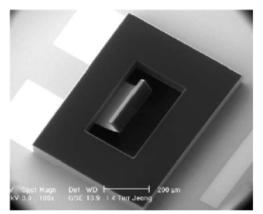
Pacemaker consumption is **40uW**.


Beating heart could produce **200uW** of power

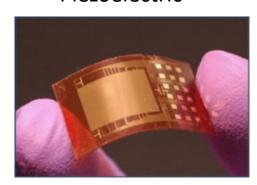
Body-powered oximeter

Leonov, V., & Vullers, R. J. (2009).

Micro-robot for remote monitoring

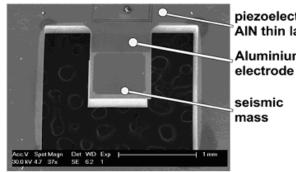


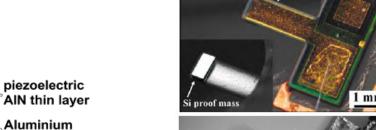
The input power a 20 mg robotic fly is **10 – 100 uW**


A. Freitas Jr., Nanomedicine, Landes Bioscience, 1999

Microscale energy harvesters

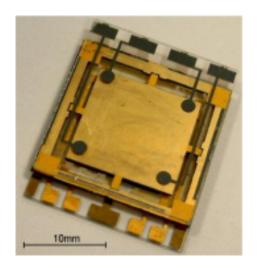
Piezoelectric


Jeon et al. 2005

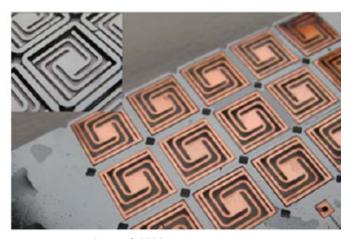

ZnO nanowires Wang, Georgia Tech (2005)

Chang. MIT 2013

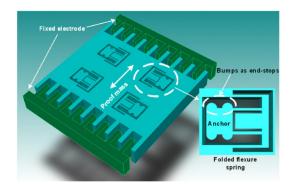
M. Marzencki 2008 – TIMA Lab (France)

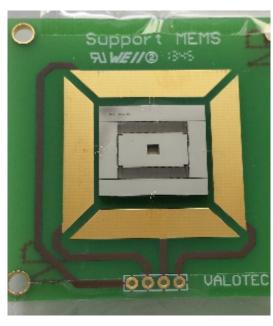


PZT/Si cantilever

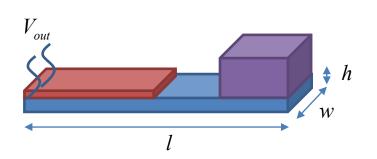

D. Briand, EPFL 2010

Microscale energy harvesters


Electrostatic and electromagnetic


Mitcheson 2005 (UK) Electrostatic generator 20Hz 2.5uW @ 1g

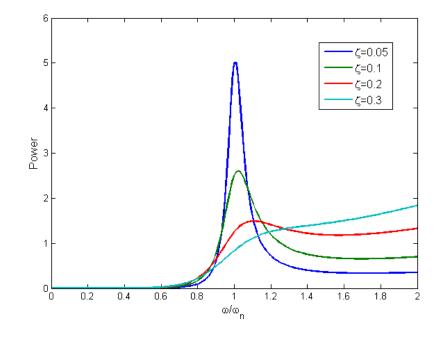
EM generator, Miao et al. 2006



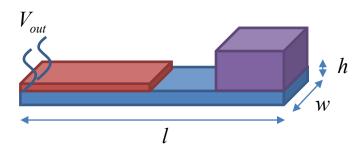
Le and Halvorsen, 2012

Cottone F., Basset P. ESIEE Paris 2013

First order power calculus with William and Yates model


$$\omega_n = 2\pi C_n \sqrt{\frac{E}{\rho}} \frac{h}{l^2}$$
$$k = \xi \frac{Ewh^3}{l^3}$$

Boudary conditions	C1
doubly clamped	1,03
cantilever	0,162


$$k = \xi \frac{Ewh^3}{l^3}$$

Boudary conditions	Uniform load ξ	Point load ξ
doubly clamped	3	32 16
cantilever	0.6	57 0.25

- Low efficiency off resonance
- High resonant frequency at miniature scales
- Power $\rightarrow A^2/4$ where A is the acceleration and I the linear dimension

First order power calculus with William and Yates model

The instantaneous dissipated power by electrical damping is given by

$$P(t) = \frac{d}{dt} \int_{0}^{x} F(t) dx = \frac{1}{2} d_T \dot{x}^2$$

The velocity is obtained by the first derivative of steady state amplitude

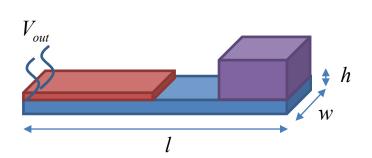
that is

$$P_{e} = \frac{m\zeta_{e} \left(\frac{\omega}{\omega_{n}}\right)^{3} \omega^{3} Y_{0}^{2}}{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2} + \left[2(\zeta_{e} + \zeta_{m})\frac{\omega}{\omega_{n}}\right]^{2}}$$

$$\dot{X} = \frac{\omega r^{2} Y_{0}}{\sqrt{(1 - r^{2})^{2} + (2(\zeta_{e} + \zeta_{m})r)^{2}}},$$

$$\dot{X} = \frac{\omega r^2 Y_0}{\sqrt{(1 - r^2)^2 + (2(\zeta_e + \zeta_m)r)^2}},$$

At resonance, that is $\omega \!\!=\! \omega_{\!\scriptscriptstyle n}$, the maximum power is given by


$$P_e = \frac{m\zeta_e\omega_n^3Y_0^2}{4(\zeta_e + \zeta_m)^2} = \frac{m^2d_e\omega_n^4Y^2}{2(d_e + d_m)^2} \quad \text{or with acceleration amplitude } A_0 = \omega_n^2Y_0. \quad P_{el} = \frac{m\zeta_eA^2}{4\omega_n(\zeta_m + \zeta_e)^2}$$

$$P_{el} = \frac{m\zeta_e A^2}{4\omega_n (\zeta_m + \zeta_e)^2}$$

for a particular transduction mechanism forced at natural frequency ω_n , the power can be maximized from the equation

Max power when the condition $\zeta_{e} = \zeta_{m}$ is verified

First order power calculus with William and Yates model

$$\omega_n = 2\pi C_n \sqrt{\frac{E}{\rho}} \frac{h}{l^2}$$

$$w$$

$$k = \xi \frac{Ewh^3}{l^3}$$

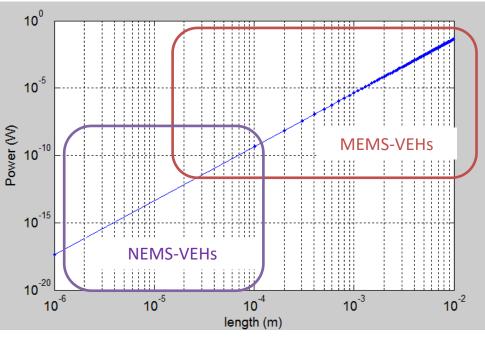
$$k = \xi \frac{Ewh^3}{l^3}$$

$$m_{eff} = m_{beam} + 0.32 m_{tip} = lwh \rho_{si} + 0.32 (l/4)^3 \rho_{si}$$

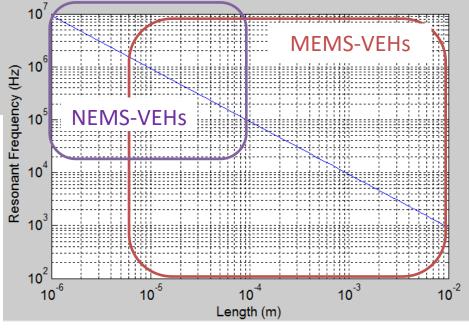
$$P_{el} = \frac{m\zeta_{e}A^{2}}{4\omega_{n}(\zeta_{m} + \zeta_{e})^{2}} = \frac{\left(lwh\rho_{si} + 0.32(l/4)^{3}\rho_{mo}\right)}{8\omega_{n}\zeta_{m}}A^{2} = \frac{\left(lwh\rho_{si} + 0.32(l/4)^{3}\rho_{mo}\right)}{16\pi C_{n}\sqrt{\frac{E}{\rho_{si}}}\frac{h}{l^{2}}\zeta_{m}}A^{2}$$

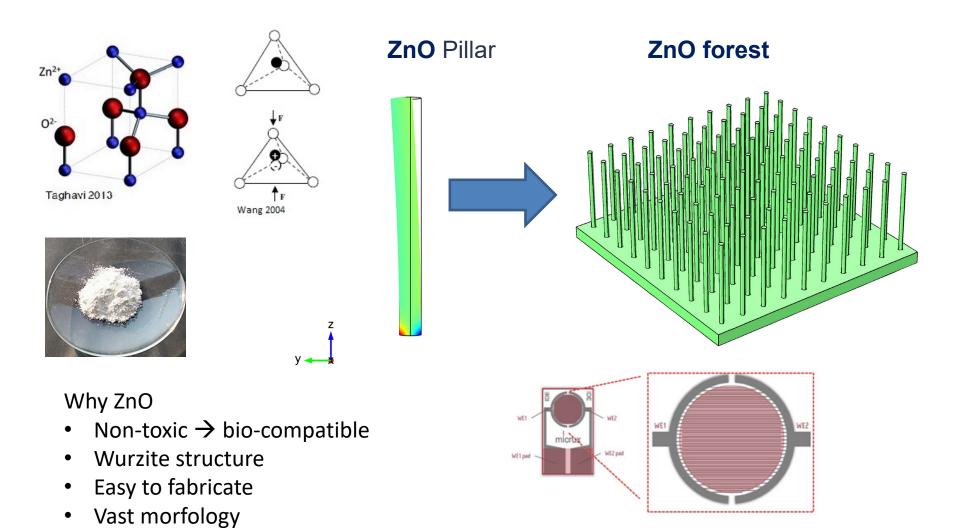
At max power condition $\zeta_e = \zeta_m$

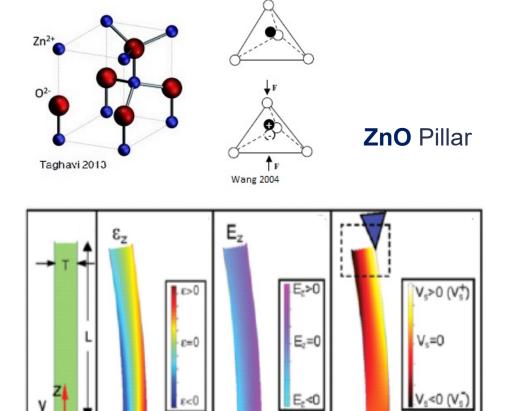
By assuming

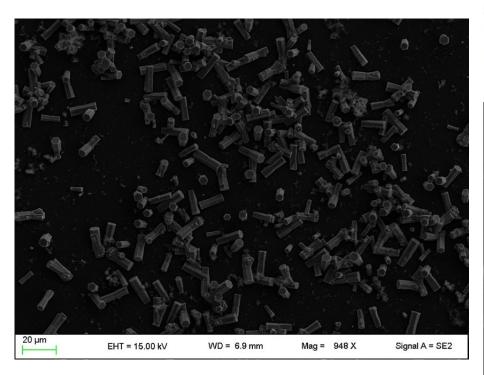

$$A = 1g$$

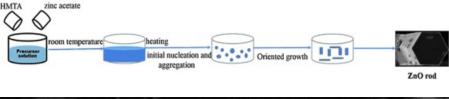
$$\zeta_m = 0.01$$

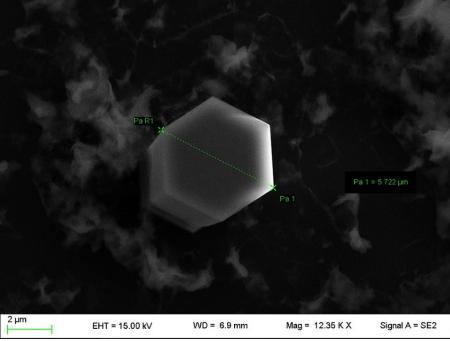

$$h = l / 200$$


$$w = l / 4$$

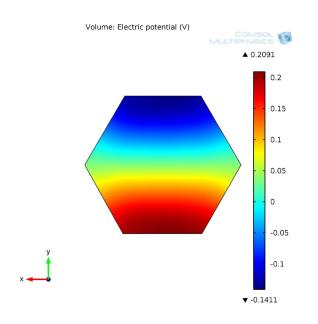

$$P_{el} = \frac{\rho_{si} / 800 + 0.32 \cdot 64 \rho_{mb}}{\frac{16}{200} \pi C_n \sqrt{\frac{E}{\rho_{si}}} \zeta_m} A^2 l^4$$

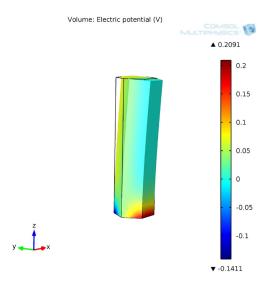

$$A=1g$$
By assuming $\zeta_m=0.01$
 $h=l/200$
 $w=l/4$

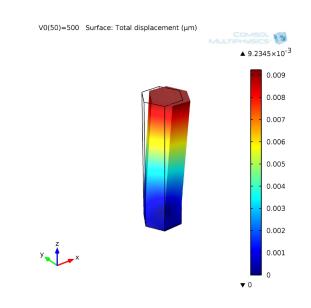


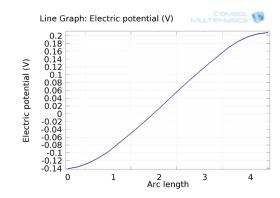


ZnO forest





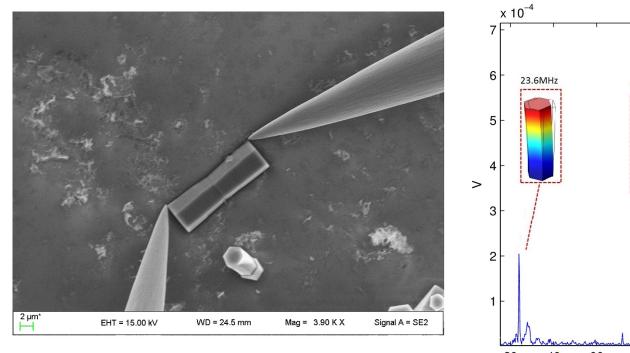

Hydrotermal synthesis

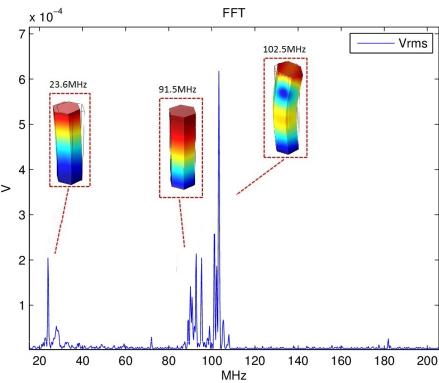

Length: 15 μm

Thickness: 4 – 6 um

Stress-strain equations

$$S = [s_E]T + [d^t]E$$
$$D = [d]T + [\varepsilon_T]E$$

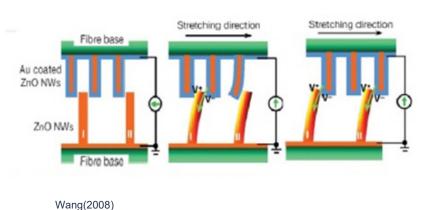

Strain-charge form


$$S = \left[S_E \right] T + \left[d^t \right] E \qquad \omega_1 = \beta_1^2 \sqrt{\frac{EI}{\mu}} = \frac{3.515}{L^2} \sqrt{\frac{EI}{\mu}}$$

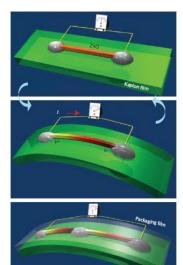
Length: 17 μm

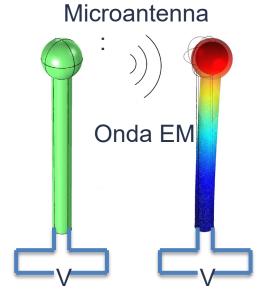
Thickness: 5um

First mode: 10.9 Mhz

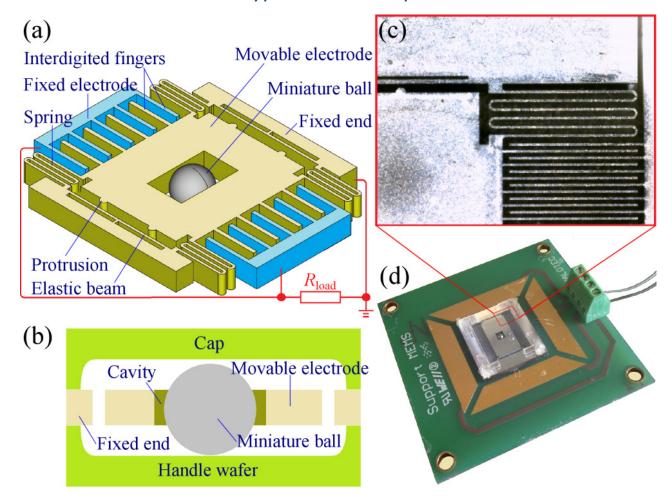


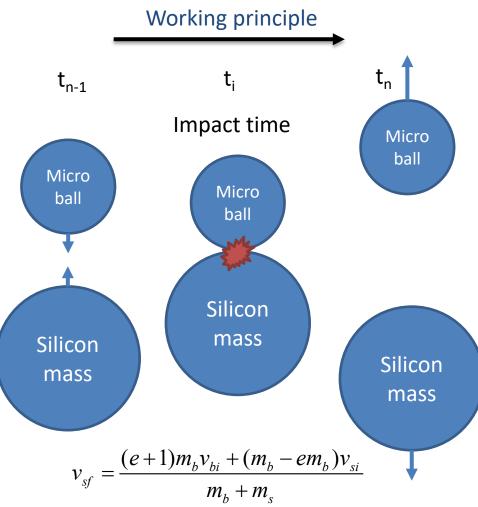
 SEM with metal probes (100nm) on a single ZnO crystal for frequency mode investigation


Piezoelectric micro-pillars: future development

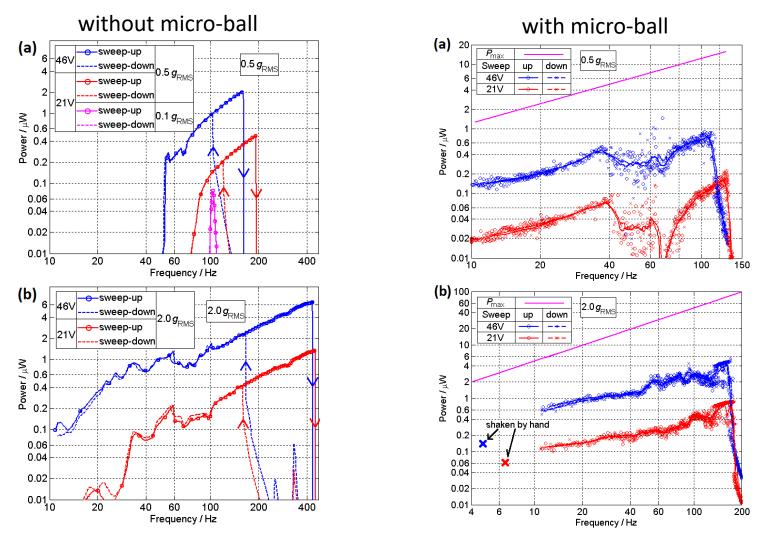

- Implementation of vertically-aligned ZnO micropillars on IDE and other geometry (e.g. horionzontal)
- Use of the devive as VEH and vibration sensor.
- Fabrication of same device with BaTiO3
- Use of the piezo pillars as micro electro-mechanical antenna

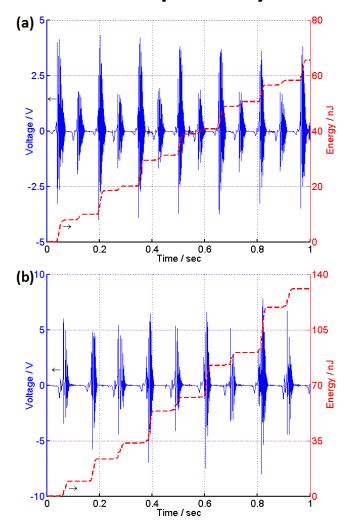
Microfibre-Nanowire:


Piezoelectric ribbon:


Yang(2009)

Prototype fabrication process





Velocity Amplified Energy Harvester At Stoke Institute, University of Limerick, Ireland

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, Appl. Phys. Lett. 2015.

TEST with hand shaking of the transient output voltage and extracted energy.

- (a) Vbias=21 V, a=2.0 grms, f=6.5 Hz;
- (b) Vbias=46 V, a=2.0 grms, f=4.7 Hz

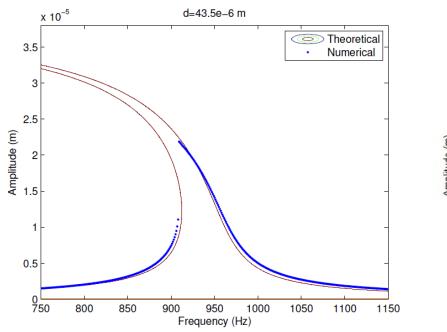
A 47-µF capacitor has been also charged through a bridge diode rectifier to 3.5 V to supply a wireless temperature sensor node.

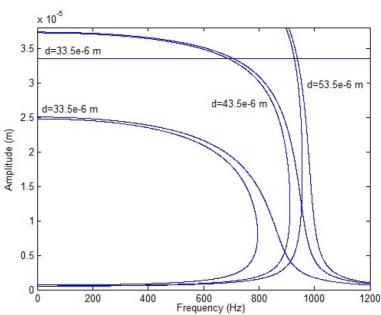
Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, Appl. Phys. Lett. 2015.

Performance comparison

Vibration	MEMS	Accel.	Main input Freq.	Vbias	Power	Power Density
type	Direction	(gRMS)	(Hz)	(V)	(uW)	(uW/cm3)
Man walking	Χ	0.39	4.15	20	1.34	13.40
Man walking	Υ	0.27	2.1	20	0.793	7.93
Man walking	Z	0.41	2.44	20	1.15	11.50
Man running	Z	1.20	3.3	20	14.9	142.00

Table 2 Comparison of Effectiveness of Published Electrostatic Motion Harvesters


Author	Reference	Generator Volume [cm ³]	Proof Mass [g]	Input Amplitude	Input Fre- quency [Hz]	Z _l [μm]	Power (un- processed) [μW]	Power (pro- cessed) [µW]	Power Density [µW/cm ³]	Harvester Effec- tiveness [%]	Volume Figure of Merit [%]
Tashiro	[104]		640	380	4.76	19000		58		0.09	
Tashiro	[142]	15	780	9000	6		36		2.42		0.02
Mizuno	[108]	0.6	0.7	0.64	743	4.9	7.4×10^{-6}		$\frac{1.23}{10^{-3}}$ ×	6.6 × 10 ⁻⁶	$\frac{1.86}{10^{-9}}$ ×
Miyazaki	[143]		5	1	45	30		0.21		12.4	
Arakawa	[144]	0.4	0.65	1000	10	1000	6		15	7.42	0.68
Despesse	[145]	18	104	90	50	90	1760	1000	56	7.66	0.06
Yen	[146]				1500			1.8			
Tsutsumino	[147]			600	20	600	278				
Tsutsumino	[148]			1000	20	1000	6.4				
Mitcheson	[109]	0.6	0.12	1130	20	100	2.4		4	17.9	0.02


Almost 1 order of magnitude
higher than average power density of previous works

P. D. Mitcheson, et al, Proceedings of the IEEE, vol. 96, pp. 1457-1486, 2008.

Modeling of e-VEH

With Homotopy Perturbation Method

Dr. Riccardo Marcaccioli - unpublished

Final considerations

- MEMS/NEMS Energy harvesting systems are becoming a promising technology to enable autonomous low-power wireless devices
- o Inertial vibration energy harvesters are very limited at small scale $P \sim l^3 \rightarrow$ direct force piezoelectric/electrostatic devices are more efficient at nanoscale
- Power efficiency can be improved by:
 - Innovative electro-active materials (electrets, lead-free piezo)
 - innovative micro and nanostructures
 - Nonlinear dynamical approach: bistable systems, frequency-up converters, impacting masses, electrostatic softening
- Specific application decides if one or many micro-VEH are the best choice with respect to one macro-scale VEH
- Micro- to nano-structures of piezoelectric materials have wide applications as sensors