

Vibration energy harvesting systems

Francesco Cottone

NiPS laboratory, Department of Physics and Geology, Università di Perugia, Italy

ERASMUS + IESRES
INNOVATIVE EUROPEAN STUDIES on RENEWABLE ENERGY SYSTEMS
Teaching Activity
27th June— 1st July 2016 - Pitesti, Romania

Outline

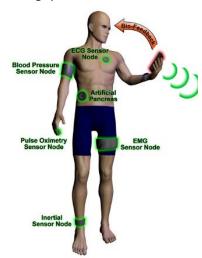
- Energy harvesting applications and principles
- Fundamentals of vibration energy harvesters
- Beyond linear systems
- Microscale energy harvesters
- Final considerations

Energy harvesting applications

Structural Monitoring

02/07/2014 - Belo Horizonte (Brazil) (birdge collapse at FIAT factory)

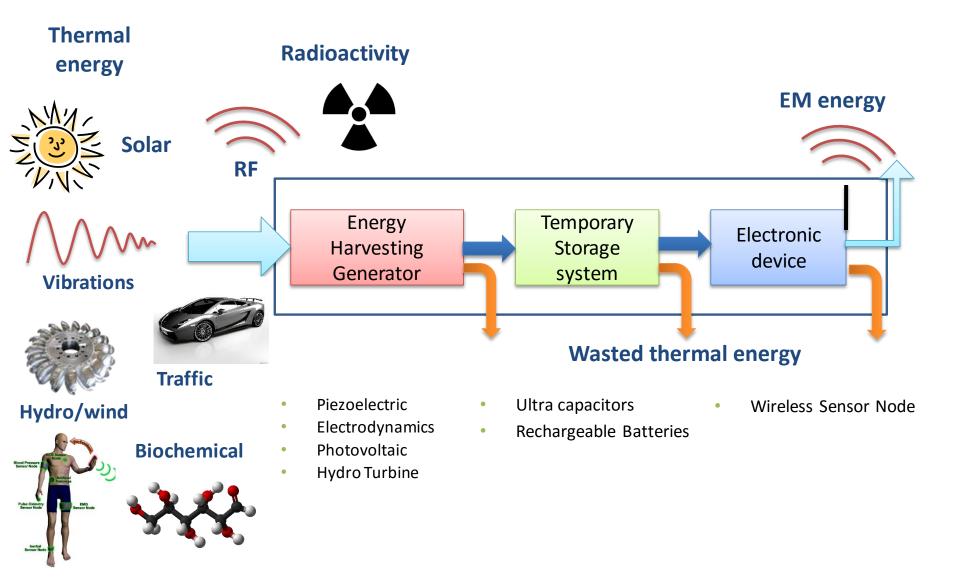
Environmental Monitoring



Transportation

Wearable sensing for health applications

Emergency medical response Monitoring, pacemaker, defibrillators


Military applications

Wireless Sensor Networks

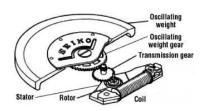
Energy Harvesting could enable 90% of WSNs applications (IdTechex)

Power sources available from the ambient

Human-made energy harvesters

Wind mill (Origin: Persia, 3000 years Sailing ship (XVI-XVII century) BC)

Crystal radio - 1906

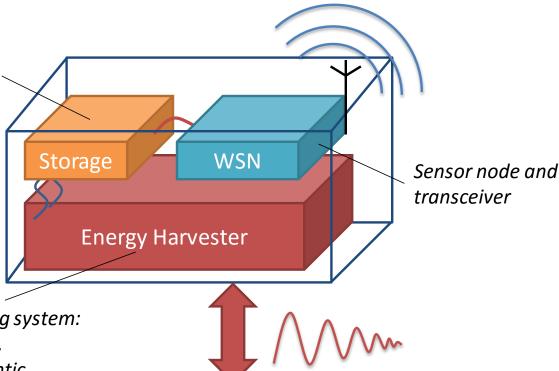


SELF-powered by Radio Frequencies !!!

First automatic wristwatch, Harwood, c. 1929 (Deutsches Uhrenmuseum, Inv. 47-3543)

First automatic watch. Abraham-Louis Perrelet, Le Locle, 1776

Self-charging Seiko wristwatch

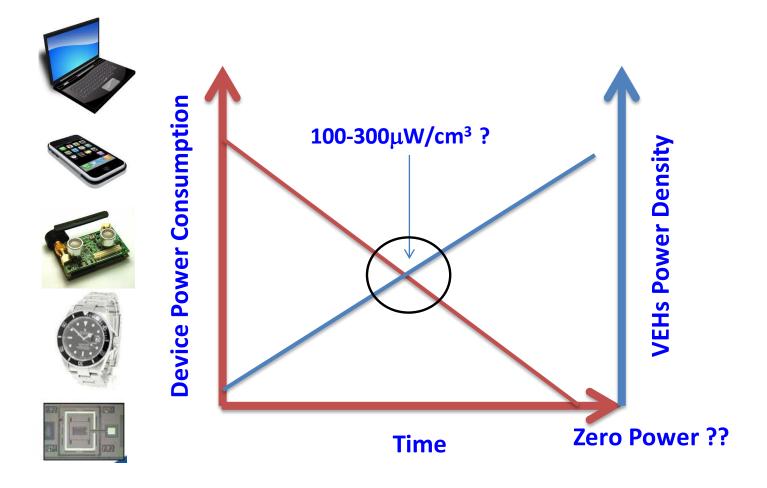

Vibration powered wireless sensor

Power density objective for EH:

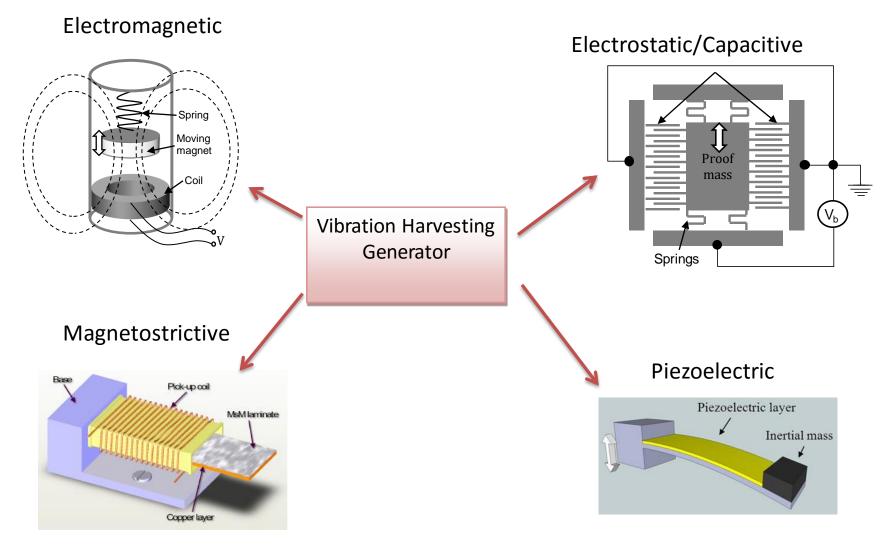
 $> 100 \,\mu W/cm^3$

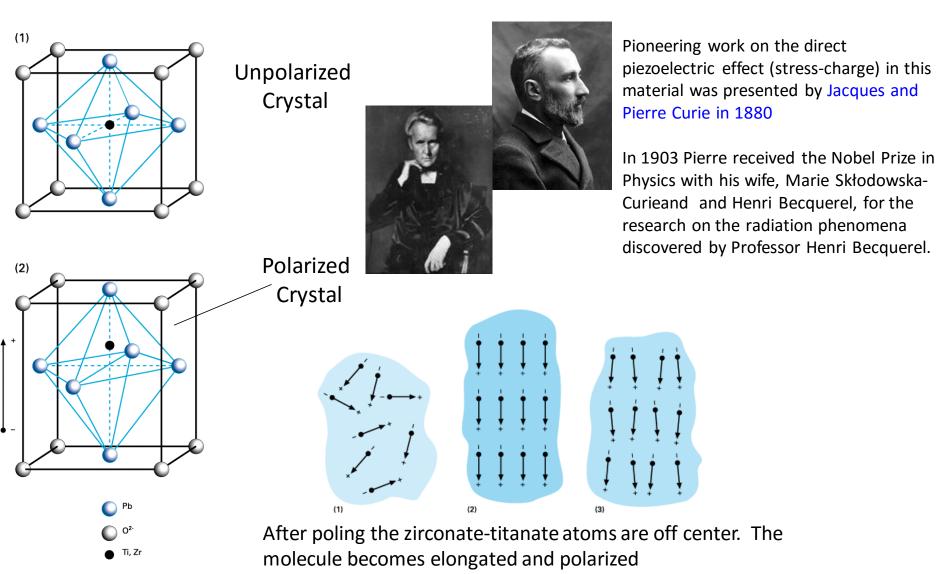
Temporary storage and conditioning electrinics:

- Ultra capacitors
- Rechargeable Batteries

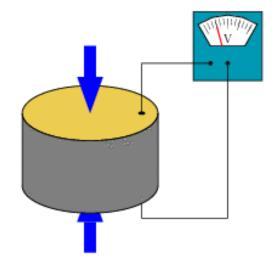


Energy harvesting system:


- piezoelectric,
- electromagentic,
- electrostatic,
- magnetostrictive


Mechanical vibrations

Mobile devices: power needs



Vibration energy harvesting

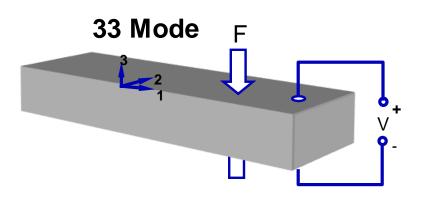
Stress-to-charge conversion

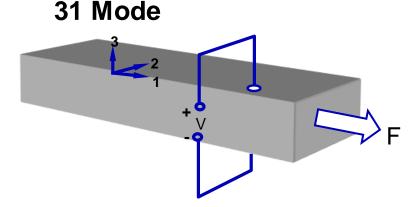
direct piezoelectric effect

Biological

- Bones
- DNA !!!

Naturally-occurring crystals


- Berlinite (AIPO₄), a rare <u>phosphate</u> <u>mineral</u> that is structurally identical to quartz
- Cane sugar
- Quartz (SiO₂)
- Rochelle salt


Man-made ceramics

- <u>Barium titanate</u> (BaTiO₃)—Barium titanate was the first piezoelectric ceramic discovered.
- Lead titanate (PbTiO₃)
- Lead zirconate titanate (Pb[Zr_xTi_{1-x}]O₃ 0≤x≤1)—more commonly known as *PZT*, lead zirconate titanate is the most common piezoelectric ceramic in use today.
- Lithium niobate (LiNbO₃)

Polymers

 <u>Polyvinylidene fluoride</u> (PVDF): exhibits piezoelectricity several times greater than quartz. Unlike ceramics, longchain molecules attract and repel each other when an electric field is applied.

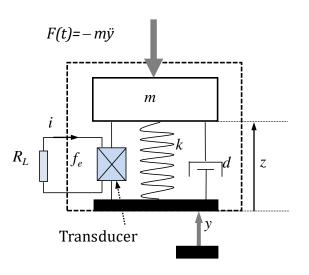
$$S = \left[s_E\right]T + \left[d^t\right]E$$
 Strain-charge
$$D = \left[d\right]T + \left[\varepsilon_T\right]E$$

$$T = \begin{bmatrix} c^E \end{bmatrix} S - \begin{bmatrix} e^t \end{bmatrix} E$$

$$D = \begin{bmatrix} e \end{bmatrix} S + \begin{bmatrix} \varepsilon^S \end{bmatrix} E$$
Stress-charge

- S = strain vector (6x1) in Voigt notation
- T = stress vector (6x1) [N/m²]
- s_F = compliance matrix (6x6) [m²/N]
- c^E = stifness matrix (6x6) [N/m²]
- d = piezoelectric coupling matrix (3x6) in Strain-Charge [C/N]
- D = electrical displacement (3x1) [C/m²]
- e = piezoelectric coupling matrix (3x6) in Stress-Charge [C/m²]
- ε = electric permittivity (3x3) [F/m]
- E = electric field vector (3x1) [N/C] or [V/m]

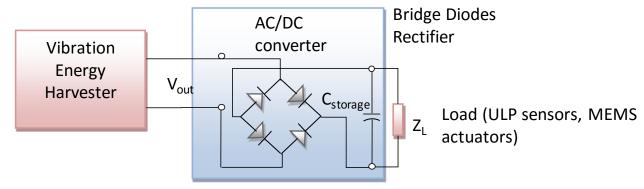

Characteristic	PZT-5H	BaTiO3	PVDF	AlN (thin film)
d ₃₃ (10 ⁻¹⁰ C/N)	593	149	-33	5,1
d ₃₁ (10 ⁻¹⁰ C/N)	-274	78	23	-3,41
k ₃₃	0,75	0,48	0,15	0,3
k ₃₁	0,39	0,21	0,12	0,23
ε_r	3400	1700	12	10,5


$$k_{31}^2 = \frac{El.energy}{Mech.energy} = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$$

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a piezoelectric material. IT's defined as the ratio between the mechanical energy converted and the electric energy input or the electric energy converted per mechanical energy input

Basic model of VEH

zinc oxide (ZnO) nanowires Wang et al. 2008




Energy harvesting from moth vibrations Chang. MIT 2013

Energy Harvesting from dancing

Inertial generators require only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

Piezoelectric layer \longrightarrow Subtrate layer \longrightarrow \downarrow h_s

Ep and Es are the Young's modulus of piezo layer and steel substrate respectively

Governing equations

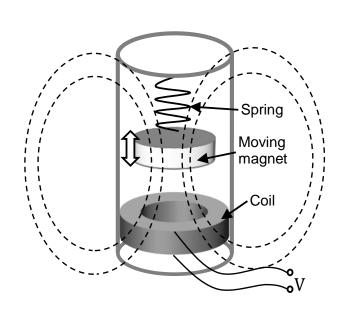
$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$

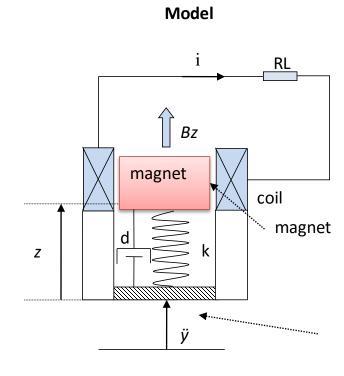
$$\alpha = kd_{31} / h_p k_2,$$

$$\omega_c = 1 / R_L C_p,$$

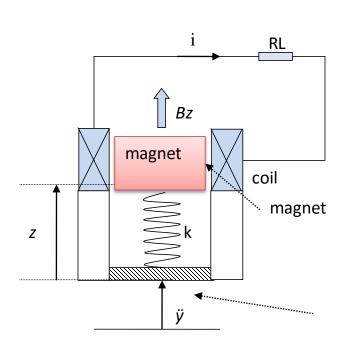
$$\lambda = \alpha R_L,$$

$$\omega_i = 1 / R_i C_p,$$

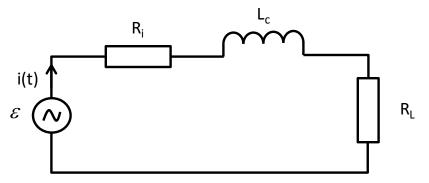

$$k = k_1 k_2 E_p,$$


$$k_1 = \frac{2I}{b(2l_b + l_m - l_e)},$$

$$k_2 = \frac{3b(2l_b + l_m - l_e)}{l_b^2 \left(2l_b + \frac{3}{2}l_m\right)},$$

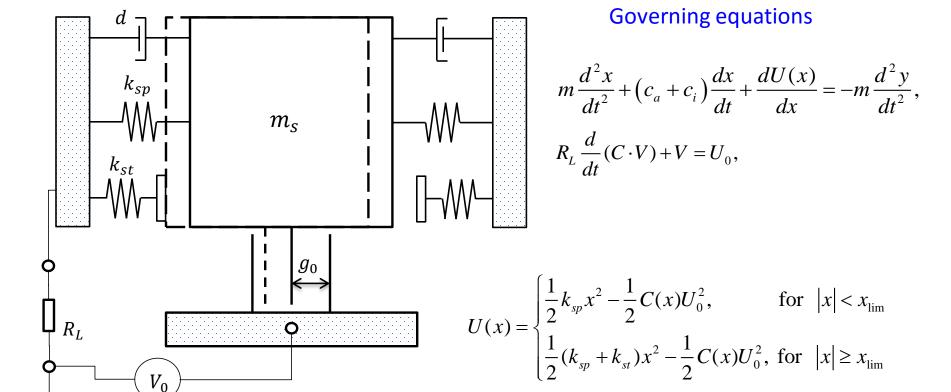

$$b = \frac{h_s + h_p}{2}, \qquad I = 2 \left[\frac{w_b h_p^3}{12} + w_b h_p b^2 \right] + \frac{E_s / E_p w_b h_s^3}{12},$$

Electromagnetic conversion

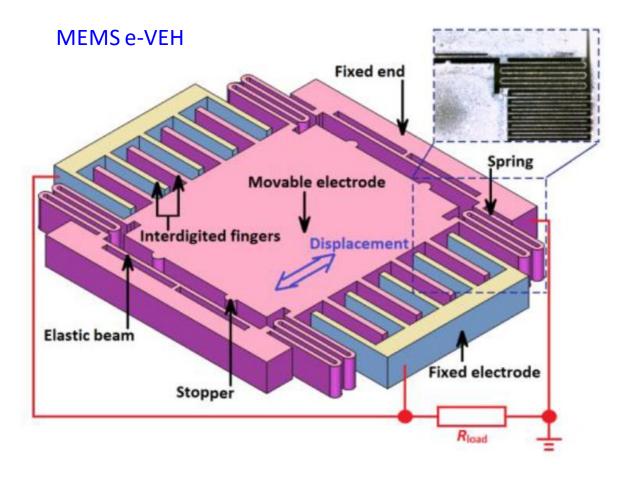


Electromagnetic conversion

Equivalent circuit


Governing equations

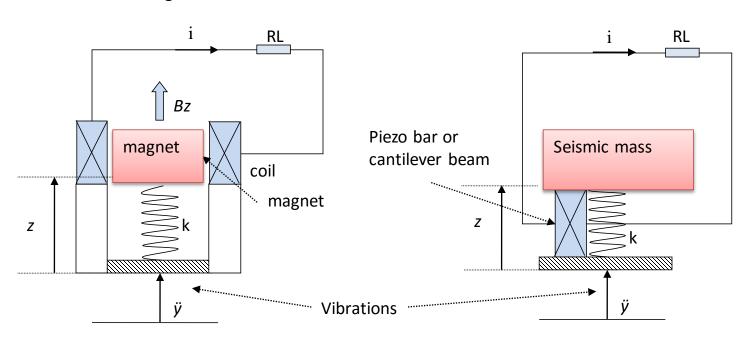
$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L = \lambda \omega_c \dot{z} \end{cases}$$



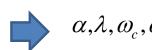
$$\alpha = Bl / R_L, \qquad \lambda = Bl = \alpha R_L,
\omega_c = R_L / L_c, \qquad \omega_i = R_i / L_c,$$

Electrostatic conversion

Electrostatic conversion



Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, *Applied Physics Letters* 2015.


General model

Electromagnetic transduction

Piezoelectric transduction

$$\begin{cases} m\ddot{z} + d\dot{z} + \frac{dU(z)}{dz} + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases}$$

Depends on the specific transduction technique!

General model

For LINEAR mechanical oscillators

$$\begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L = -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i) V_L = \lambda \omega_c \dot{z} \end{cases}$$

Laplace transform

$$\ddot{y} = Y_0 e^{j\omega t} \qquad \Longrightarrow \qquad \begin{pmatrix} ms^2 + ds + k & \alpha \\ -\lambda \omega_c s & s + \omega_c \end{pmatrix} \begin{pmatrix} Z \\ V \end{pmatrix} = \begin{pmatrix} -mY \\ 0 \end{pmatrix}$$

$$Z = \frac{-mY}{\det A}(s + \omega_c) = \frac{-mY \cdot (s + \omega_c)}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c},$$

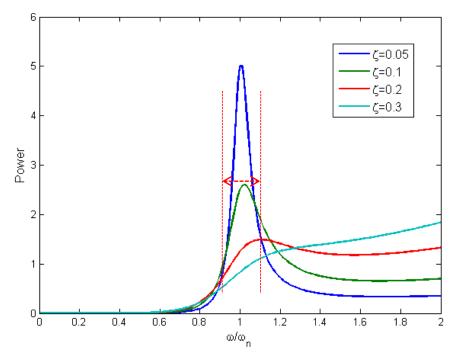
$$V = \frac{-mY}{\det A} \lambda \omega_c s = \frac{-mY \cdot \lambda \omega_c s}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha \lambda \omega_c + d\omega_c)s + k\omega_c}.$$

Hence, the transfer functions between displacement and voltage over input acceleration are given by

$$H_{ZY}(s) = \frac{Z}{Y},$$
 (a)

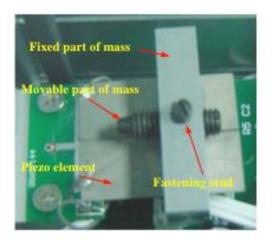
$$H_{ZY}(s) = \frac{Z}{Y}$$
, (a) $H_{VY}(s) = \frac{V}{Y}$. (b)

By substituting $s=j\omega$ in , we can calculate the electrical power dissipated across the resistive load

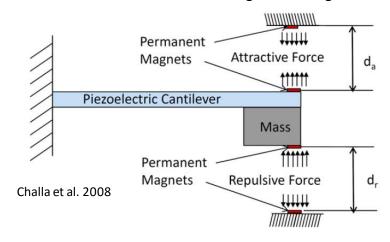

$$P_{e}(\omega) = \frac{Y_{0}^{2}}{2R_{L}} \left| \frac{m_{2}\lambda\omega_{c}j\omega}{(\omega_{c} + j\omega)(-m_{2}\omega^{2} + d_{2}j\omega + k_{2}) + \alpha\lambda\omega_{c}j\omega} \right|^{2}$$

Comparison of conversion techniques

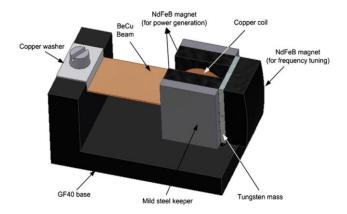
Technique	Advantages 😃	Drawbacks 😕
Piezoelectric	 high output voltages well adapted for miniaturization high coupling in single crystal no external voltage source needed 	 expensive small coupling for piezoelectric thin films large load optimal impedance required (MΩ) Fatigue effect
Electrostatic	 suited for MEMS integration good output voltage (2-10V) possiblity of tuning electromechanical coupling Long-lasting 	 need of external bias voltage relatively low power density at small scale
Electromagnetic	 good for low frequencies (5-100Hz) no external voltage source needed suitable to drive low impedances 	 inefficient at MEMS scales: low magnetic field, micro- magnets manufacturing issues large mass displacement required.


Main limits of resonant VEHs

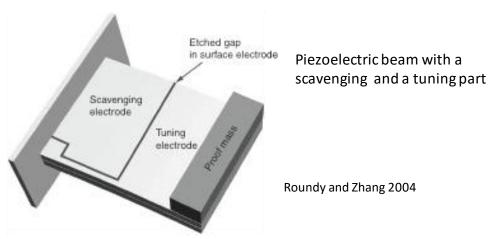
- narrow bandwidth that implies constrained resonant frequency-tuned applications
- Non-adaptation to variable vibration sources
- small inertial mass and high resonant frequency at micro/nano-scale -> most of vibration sources are below 100 Hz


At 20% off the resonance the power falls by 80-90%

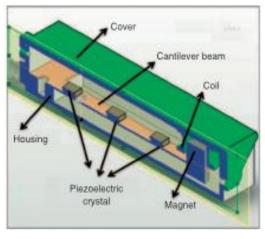
Frequency tuning



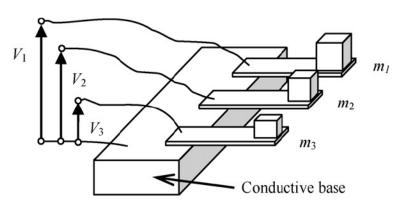
Piezoelectric cantilever with a movable mass


Piezoelectric cantilever with magnetic tuning

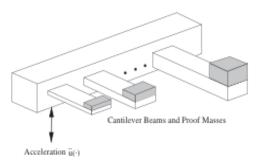
Wu et al. 2008



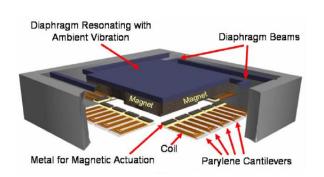
Zhu, et al. (2010). Sensors and Actuators A: Physical



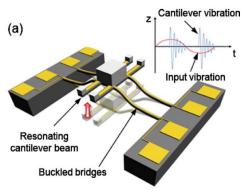
Multimodal Energy Harvesting


Tadesse et al. 2009

Hybrid harvester with piezoelectric and electromagnetic transduction mechanisms

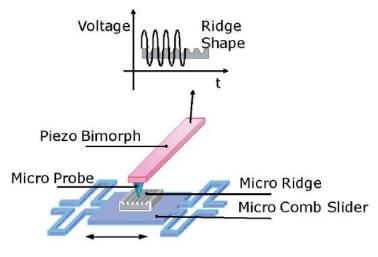

Ferrari, M., et al. (2008). Sensors and Actuators A: Physical

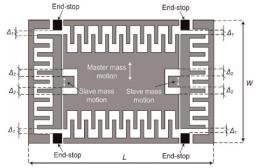



Shahruz 2006

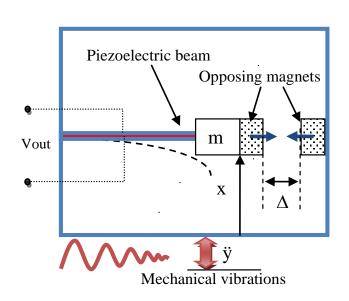
Piezoelectric cantilever arrays with various lengths and tip masses

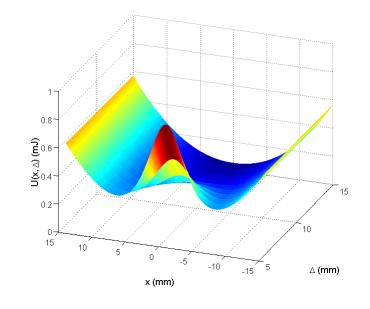
Frequency-up conversion




Jung, S.-M. et al. (2010). Applied Physics Letters

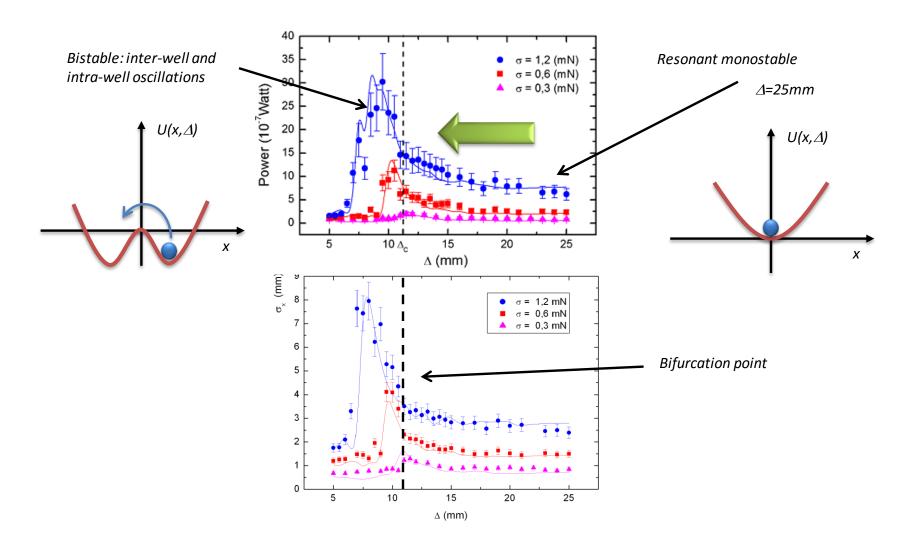
H. Kulah and K. Najafi, IEEE Sensors Journal 8 (3), 261 (2008).


D.G. Lee et al. IEEE porc. (2007)

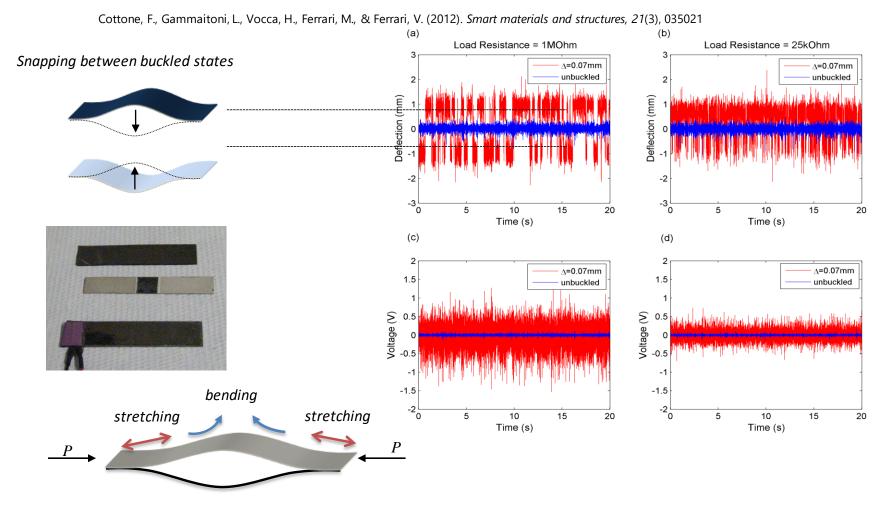

Impact electrostatic MEMS generator

Le, C. P., Halvorsen (2012). *Journal of Intelligent Material Systems and Structures*

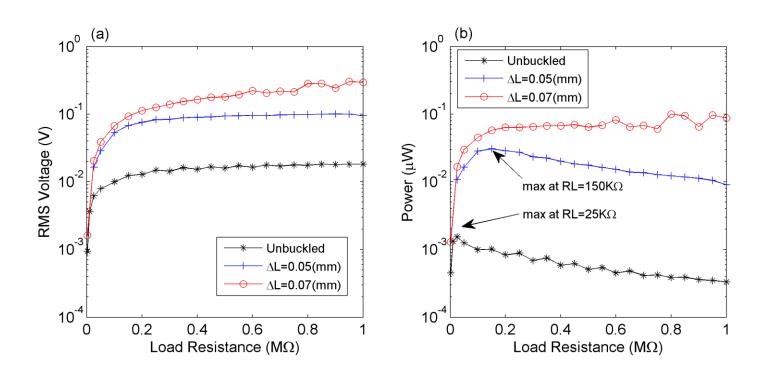
Nonlinear systems for vibration energy harvesting



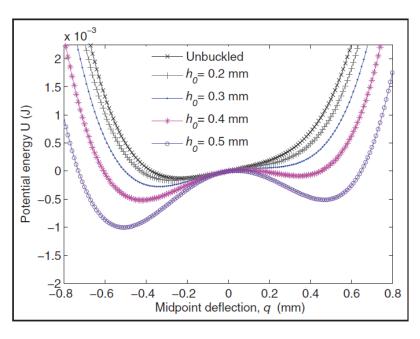
Magneto-elastic potential


Governing equations of a single-DOF piezo-magnetoelastic model

$$\begin{split} U(x,\Delta) &= \frac{1}{2} K_{eff} x^2 \left(+ \frac{\mu_0}{2\pi} \frac{M_1 M_2}{(x^2 + \Delta^2)^{3/2}} \right) \\ \begin{cases} m\ddot{x}(t) + \delta \dot{x}(t) + K_{eff} x(t) + \frac{\partial U(x,\Delta)}{\partial x} + K_v V(t) = -m \ddot{y}(t) \\ \dot{V}(t) + \frac{1}{\tau} V(t) = K_c \dot{x}(t); & \tau = R_L C_p \end{cases} \end{split}$$


Cottone, F., H. Vocca & L. Gammaitoni. PRL, 102 (2009).

Buckled beam piezoelectric harvesters



Experimental and numerical results

Cottone, F., L. Gammaitoni, H. Vocca, M. Ferrari & V. Ferrari (2012) Smart materials and structures, 21, 2012.

Figure 3. Potential energy of the system for increasing values of buckling height h_0 .

F. Cottone et al. J. Intell. Mater. Syst. Struct. 2014.

Bandwidth enhancement of 2.5x with bistability at 0,2 grms

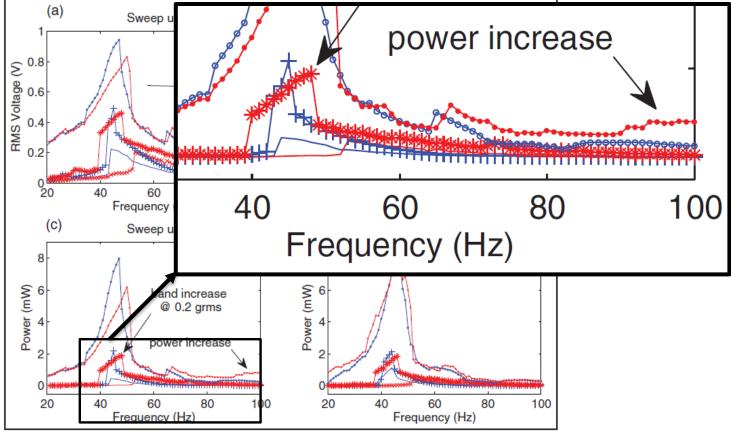
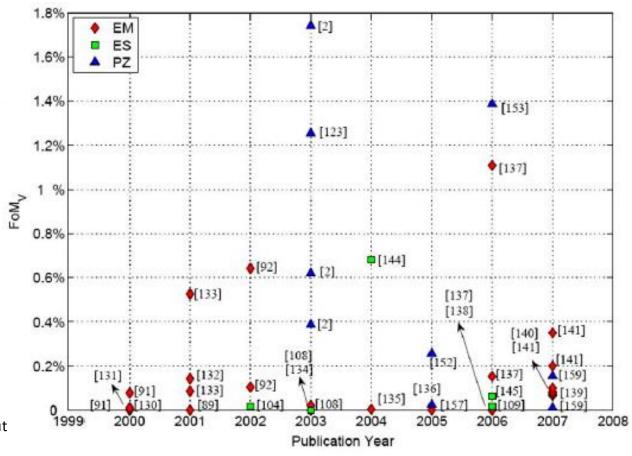


Figure 6. Experimental comparison of unbuckled- and buckled-beam (h_0 = 0.3 mm) generators for up (left column) and down (right column) frequency sweeps with acceleration amplitudes of 0.1, 0.2, and 0.5 g_{rms} . (a and b) rms voltage and (c and d) the corresponding power dissipated across the optimal load resistance R_L = 112 Ω . rms: root mean square.

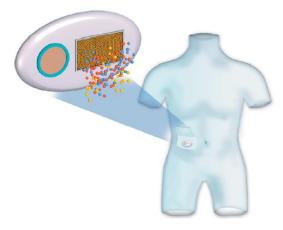
Figure of Merit


Volume figure of merit

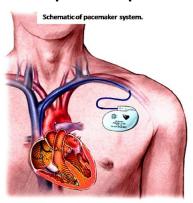
$$FoM_V = \frac{Useful~Power~Output}{\frac{1}{16} Y_0 \rho_{Au} Vol^{\frac{4}{3}} \omega^3}$$

Bandwidth figure of merit

$$FoM_{BW} = FoM_V \times \frac{\delta\omega_{1 dB}}{\omega}$$


Frequency range within which the output power is less than 1 dB below its maximum value

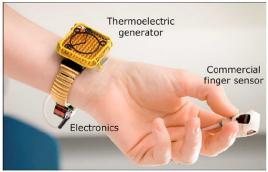
Mitcheson, P. D., E. M. Yeatman, et al. (2008). Proceedings of the IEEE 96(9): 1457-1486.


Microscale energy harvesters

MEMS-based drug delivery systems

Bohm S. et al. 2000

Heart powered pacemaker



D. Tran, Stanford Univ. 2007

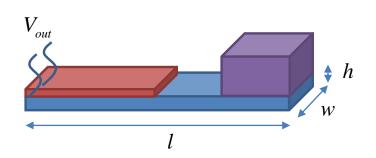
Pacemaker consumption is **40uW**.

Beating heart could produce **200uW** of power

Body-powered oximeter

Leonov, V., & Vullers, R. J. (2009).

Micro-robot for remote monitoring

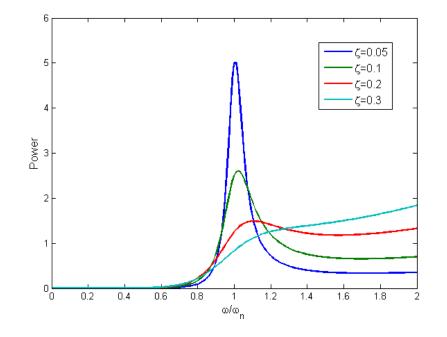


The input power a 20 mg robotic fly is **10 – 100 uW**

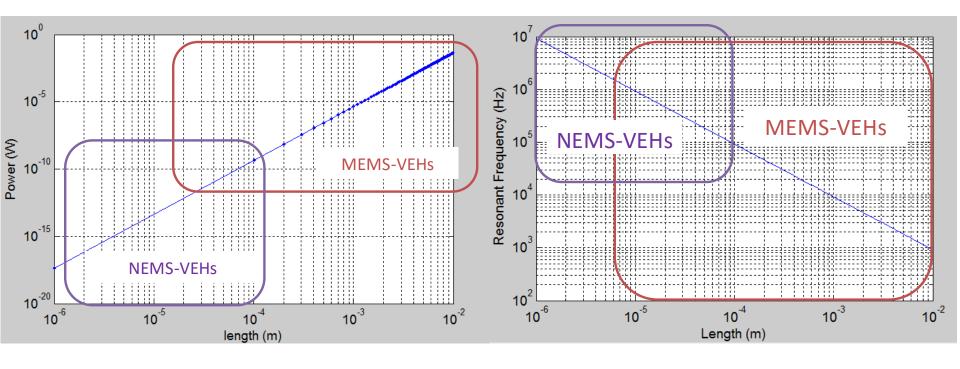
A. Freitas Jr., Nanomedicine, Landes Bioscience, 1999

Microscale energy harvesters: scaling issues

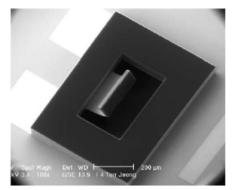
First order power calculus with William and Yates model

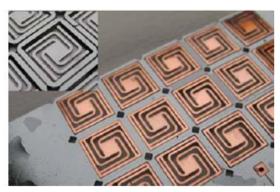

$$\omega_n = 2\pi C_n \sqrt{\frac{E}{\rho}} \frac{h}{l^2}$$
$$k = \xi \frac{Ewh^3}{l^3}$$

Boudary conditions	C1
doubly clamped	1,03
cantilever	0,162

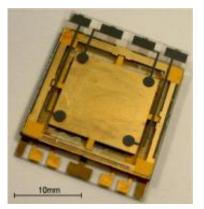

$$k = \xi \frac{Ewh^3}{l^3}$$

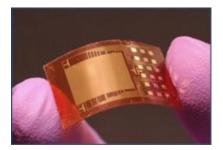
Boudary conditions	Uniform load ξ	Point load ξ
doubly clamped	3	32 16
cantilever	0.6	0.25

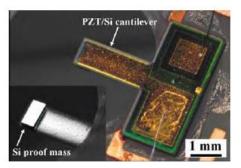

- Low efficiency off resonance
- High resonant frequency at miniature scales
- Power $\rightarrow A^2/4$ where A is the acceleration and I the linear dimension

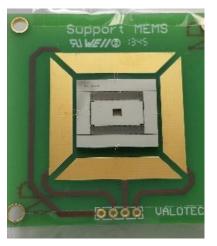

Microscale energy harvesters: scaling issues

Microscale energy harvesters: scaling issues


Jeon et al. 2005

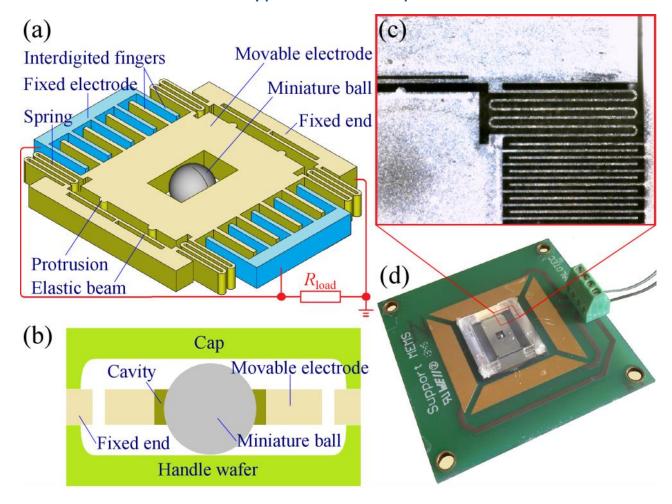

EM generator, Miao et al. 2006


Chang. MIT 2013

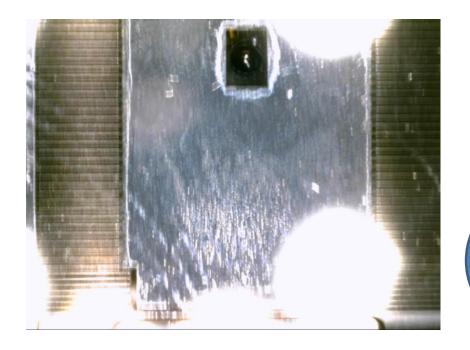

Mitcheson 2005 (UK) Electrostatic generator 20Hz 2.5uW @ 1g

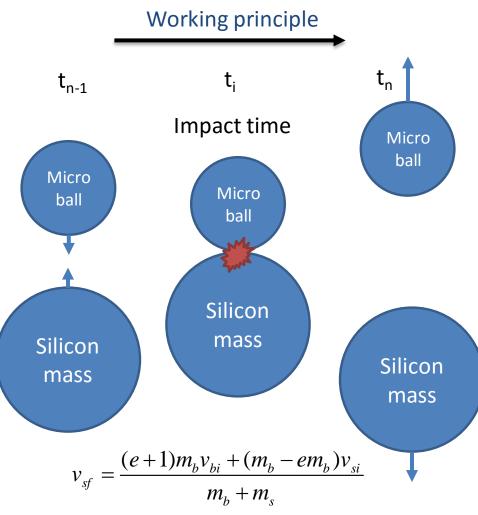
ZnO nanowires Wang, Georgia Tech (2005)

D. Briand, EPFL 2010

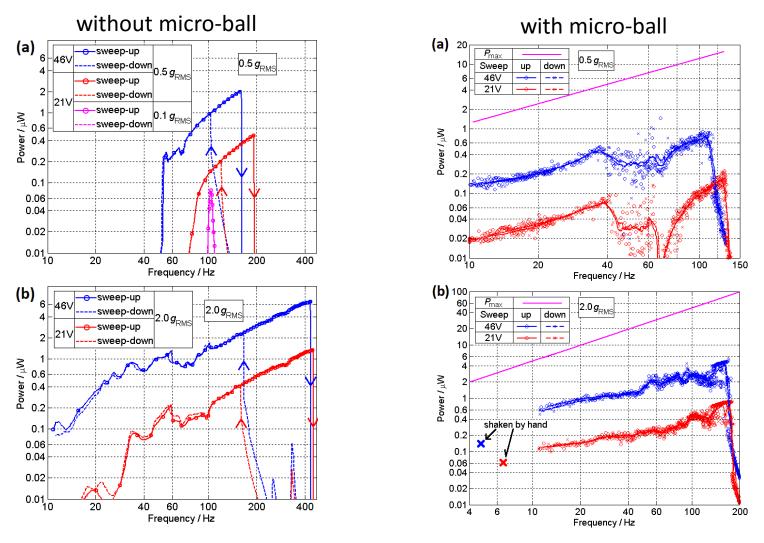


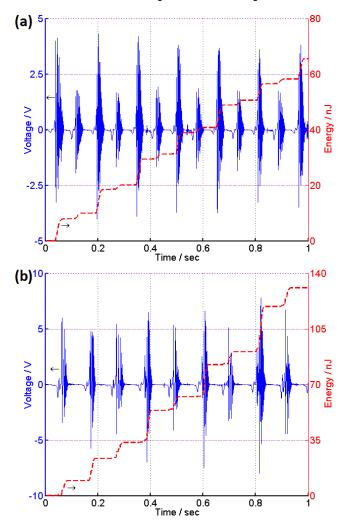
Cottone F., Basset P. ESIEE Paris 2013


2005


2015

Prototype fabrication process





Velocity Amplified Energy Harvester At Stoke Institute, University of Limerick, Ireland

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, Appl. Phys. Lett. 2015.

TEST with hand shaking of the transient output voltage and extracted energy.

- (a) Vbias=21 V, a=2.0 grms, f=6.5 Hz;
- (b) Vbias=46 V, a=2.0 grms, f=4.7 Hz

A 47-µF capacitor has been also charged through a bridge diode rectifier to 3.5 V to supply a wireless temperature sensor node.

Y. Lu, F. Cottone, S. Boisseau, F. Marty, D. Galayko, and P. Basset, Appl. Phys. Lett. 2015.

Performance comparison

Vibration	MEMS	Accel.	Main input Freq.	Vbias	Power	Power Density
type	Direction	(gRMS)	(Hz)	(V)	(uW)	(uW/cm3)
Man walking	Χ	0.39	4.15	20	1.34	13.40
Man walking	Υ	0.27	2.1	20	0.793	7.93
Man walking	Z	0.41	2.44	20	1.15	11.50
Man running	Z	1.20	3.3	20	14.9	142.00

Table 2 Comparison of Effectiveness of Published Electrostatic Motion Harvesters

Author	Reference	Generator Volume [cm ³]	Proof Mass [g]	Input Amplitude [µm]	Input Fre- quency [Hz]	Z _l [μm]	Power (un- processed) [μW]	Power (pro- cessed) [µW]	Power Density [\(\mu\)/cm ³]	Harvester Effec- tiveness [%]	Volume Figure of Merit [%]
Tashiro	[104]		640	380	4.76	19000		58		0.09	
Tashiro	[142]	15	780	9000	6		36		2.42		0.02
Mizuno	[108]	0.6	0.7	0.64	743	4.9	7.4×10^{-6}		1.23×10^{-3}	6.6 × 10 ⁻⁶	1.86 × 10 ⁻⁹
Miyazaki	[143]		5	1	45	30		0.21		12.4	7
Arakawa	[144]	0.4	0.65	1000	10	1000	6		15	7.42	0.68
Despesse	[145]	18	104	90	50	90	1760	1000	56	7.66	0.06
Yen	[146]				1500			1.8			
Tsutsumino	[147]			600	20	600	278				
Tsutsumino	[148]			1000	20	1000	6.4				
Mitcheson	[109]	0.6	0.12	1130	20	100	2.4		4	17.9	0.02

Almost 1 order of magnitude
higher than average power density of previous works

P. D. Mitcheson, et al, Proceedings of the IEEE, vol. 96, pp. 1457-1486, 2008.

Final considerations

- Energy harvesting systems will enable low-power Technology to be completely autonomous
- Energy harvesting systems can be improved by:
 - Nonlinear dynamic: bistable systems, frequency-up converters, impacting masses, electrostatic softening
 - Innovative electro-active materials (electrets, lead-free piezo)
 - Miniaturization: research on innovative nanostructured piezoelectric, magnetic and electrets materials, frequency-up conversion
- There is need for improvement for low-power electronics
 - Low-consumption components
 - Efficient conditioning circuit
 - Power-aware software